

PLAN MAESTRO PARA EL SECTOR HÍDRICO DE LA PROVINCIA DE MENDOZA

Reporte 4

Balances Prospectivos

Marzo 2025

ÍNDICE

1. II	NTRODUCCIÓN	6
2. R	ESUMEN EJECUTIVO	6
3. O	BJETIVO DEL INFORME	7
	ÁLCULO DE NIVELES DE ABASTECIMIENTO SOSTENIBLES	
4.1.	Metodología	
4.1.	AGUA DISPONIBLE	
4.2.	NIVEL DE ABASTECIMIENTO SUSTENTABLE - CÁLCULOS	
	ESUMEN DE LA DEMANDA (INFORME 3.2)	
5.1.	Demanda Poblacional	31
5.2.	DEMANDA AGRÍCOLA	
5.3.	OTRA DEMANDA POR TIPO	
5.4.	DEMANDA AMBIENTAL EN CUENCA RIO MALARGÜE	
5.5.	RESUMEN DE LAS PROYECCIONES DE LA DEMANDA	
6. P	ROYECCIÓN EL DÉFICIT ESPERADO EN CADA CUENCA	
6.1.	OFERTA RECIRCULADA	34
6.2.	DÉFICIT PROYECTADO, SITUACIÓN ACTUAL SIN MEJORA	36
7. P	OTENCIAL DE REDUCCIÓN DE LA DEMANDA DE AGUA	39
7.1.	Eficiencia de aplicación	39
7.2.	EFICIENCIA DE CONDUCCIÓN	40
7.3.	EFICIENCIA DE CONDUCCIÓN + EFICIENCIA DE APLICACIÓN (MEZCLA)	41
8. B	ALANCES HÍDRICOS PROSPECTIVOS	42
8.1.	Escenario número 1 – Situación Actual	42
8.2.	ESCENARIO NÚMERO 2 – TOTAL DERECHOS	47
8.3.	ESCENARIO NÚMERO 3	49
8.4.	RESUMEN DE BALANCES HÍDRICOS PROSPECTIVOS	51
9. A	SPECTOS METODOLÓGICOS DE LA ESTIMACIÓN DE COSTOS DE MEJORAS	52
9.1.	ASPECTOS GENERALES	52
9.2.	DEFINICIÓN DEL PLAN DE INVERSIONES	52
9.3.	Овјетічо	55
10	CONCLUCIONES	57

LISTA DE TABLAS

Tabla 4-1: Percentiles de la distribución actual (2020) y de la proyección de los caudales	
anuales en los ríos Mendoza, Tunuyán, Diamante, Atuel y Malargüe para 2030, 2040 y 2050	
Tabla 4-2: Percentiles de la distribución actual (2020) y de la proyección de los caudales	10
anuales totales en la provincia de Mendoza para 2030, 2040 y 2050	17
Tabla 4-3: Mediana de la distribución actual (2020) y de la proyección de los caudales	
anuales totales en la provincia de Mendoza para 2030, 2040 y 2050. Se presenta la reducció	n
esperada para cada década con relación a la situación actual.	17
Tabla 4-4: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la	
cuenca del Río Mendoza para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y	
2050). Capacidad de Almacenamiento, 395 y 800 mm ³	19
Tabla 4-5: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la	
cuenca del Río Tunuyán para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y	
2050), 276 y 600 Mm ³ .	21
Tabla 4-6: Derrames en La Angostura y erogaciones del embalse Valle Grande	22
Tabla 4-7: Balance hídrico en hm³ para el abastecimiento correspondiente al percentil 502	25
Tabla 4-8: Balance hídrico hm³ para el abastecimiento correspondiente al nivel de	
confiabilidad de 90% y 80%.	25
Tabla 4-9: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la	
cuenca del Río Atuel para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050)),
352 y 700 mm ³	25
Tabla 4-10: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la	
cuenca del Río Diamante para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y	
2050), 544 y 1100 mm ³	28
Tabla 4-11: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la	
cuenca del Río Malargüe para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y	
2050), 0 y 200 mm ³	30
Tabla 5-1: Demanda poblacional actual y proyectada (hm³).	31
Tabla 5-2: Demanda agrícola proyectada (hm³).	32
Tabla 5-3: Otro tipo demanda proyectada (hm³).	32
Tabla 5-4: Resumen de las proyecciones de la demanda (hm³)	33
Tabla 6-1: Cálculo de la oferta de agua recirculada para la cuenca del río Mendoza (hm³)	35

Tabla 6-2: Cálculo de la oferta de agua recirculada para la cuenca del río Tunuyán	36
Tabla 6-3: Cálculo de la oferta de agua recirculada para la cuenca del río Diamante	36
Tabla 6-4: Cálculo del Déficit - Río Mendoza (hm³).	37
Tabla 6-5: Cálculo del Déficit - Río Tunuyán (hm³).	37
Tabla 6-6: Cálculo del Déficit - Río Diamante (hm³)	37
Tabla 6-7: Cálculo del Déficit - Río Atuel (hm³).	38
Tabla 6-8: Cálculo del Déficit - Río Malargüe (hm³).	38
Tabla 7-1: Eficiencias promedio de Aplicación.	39
Tabla 7-2: Mejora de la eficiencia de la Aplicación.	39
Tabla 7-3: Eficiencias promedio de Conducción.	40
Tabla 7-4: Mejora de la eficiencia de la Conducción.	40
Tabla 7-5: Mejora de la eficiencia de la Conducción y Aplicación	41
Tabla 7-6: Resumen del potencial de reducción de la demanda de agua	41
Tabla 8-1: Hectáreas por fuente, Río Mendoza.	42
Tabla 8-2: Balance Hídrico, Río Mendoza - Ha Cultivadas.	43
Tabla 8-3: Hectáreas por fuente, Río Tunuyán.	44
Tabla 8-4: Balance Hídrico, Río Tunuyán - Ha Cultivadas	44
Tabla 8-5: Hectáreas por fuente, Río Diamante.	45
Tabla 8-6: Balance Hídrico, Río Diamante - Ha Cultivadas.	45
Tabla 8-7: Hectáreas por fuente, Río Atuel.	45
Tabla 8-8: Balance Hídrico, Río Atuel - Ha Cultivadas.	46
Tabla 8-9: Hectáreas por fuente, Río Malargüe.	46
Tabla 8-10: Balance Hídrico, Río Malargüe - Ha Cultivadas	47
Tabla 8-11: Escenario 2 – Ha. Cultivadas.	47
Tabla 8-12: Escenario 2 – Balance Hídrico.	48
Tabla 8-13: Escenario 3 – Ha. Cultivadas.	49
Tabla 8-14: Escenario 3 – Balance Hídrico.	50
Tabla 8-15: Resumen	51
LISTA DE FIGURAS	
Figura 4-1: Proyección de caudales anuales en el río Mendoza.	8
Figura 4-2: Proyección de caudales anuales en el río Mendoza y confiabilidad para un n	ivel
de abastecimiento de 1.000 Mm3 por año.	9

Figura 4-3: Proyección de caudales anuales en el río Mendoza y nivel de abastecimiento de
1200 mm3/año
Figura 4-4: Ejemplo de escenario futuro y nivel de abastecimiento propuesto (línea roja)11
Figura 4-5: Cuencas hídricas usadas para la modelización hidrológica con HBV.IANIGLA.
Se marcan los puntos de cierre de estas (círculos amarillos) y las estaciones
hidrometeorológicas analizadas y procesadas (círculos negros). (IANIGLA, 2023)13
Figura 4-6: Distribución actual (2020) y de la proyección de los caudales anuales en los ríos
(a) Mendoza, (b) Tunuyán, (c) Diamante, (d) Atuel y (e) Malargüe para 2030, 2040 y 2050.14
Figura 4-7: Río Mendoza variación de, (a) Probabilidad de Abastecimiento, (b)
Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y
Capacidad de Almacenamiento Fija (395 mm3) para 2020, 2030, 2040 y 205018
Figura 4-8: Río Mendoza variación de, (a) Probabilidad de Abastecimiento y (b)
Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de
Almacenamiento Fija que duplica la existente (800 mm3) para 2020, 2030, 2040 y 205019
Figura 4-9: Río Tunuyán variación de, (a) Probabilidad de Abastecimiento, (b)
Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y
Capacidad de Almacenamiento Fija (276 mm³) para 2020, 2030, 2040 y 205020
Figura 4-10: Río Tunuyán variación de, (a) Probabilidad de Abastecimiento y (b)
Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de
Almacenamiento Fija que duplica la existente (600 mm³) para 2020, 2030, 2040 y 205021
Figura 4-11: Derrames en La Angostura y volumen erogado por Valle Grande23
Figura 4-12: Relación entre los derrames en La Angostura y volumen erogado por Valle
Grande. 23
Figura 4-13: Río Atuel variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento
Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de
Almacenamiento Fija (352 mm³) para 2020, 2030, 2040 y 205024
Figura 4-14: Río Atuel variación de, (a) Probabilidad de Abastecimiento y (b)
Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de
Almacenamiento Fija que duplica la existente (700 mm3) para 2020, 2030, 2040 y 205026
Figura 4-15: Río Diamante variación de, (a) Probabilidad de Abastecimiento, (b)
Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y
Capacidad de Almacenamiento Fija (544 mm³) para 2020, 2030, 2040 y 205027

LISTA DE APÉNDICES (ARCHIVO ZIP)

Escenario	 Archivos Excel - todas las cuencas - (Archivo
1	 Zip)
Escenario	 Archivos Excel - todas las cuencas - (Archivo
2	 Zip)
Escenario	 Archivos Excel - todas las cuencas - (Archivo
3	 Zip)

1. INTRODUCCIÓN

El informe presenta tres escenarios futuros para la evaluación del balance hídrico en la provincia de Mendoza.

Dichos escenarios se realizaron con base en la demanda proyectada (Reporte N°3 - Proyecciones de demanda) y la oferta hídrica proyectada (Reporte N°2 - Proyecciones de la Oferta).

Se presenta la oferta hídrica sostenible en función de la oferta disponible actual y el volumen de almacenamiento existente en cada cuenca.

Los déficits proyectados resultantes del balance indican la necesidad de implementar mejoras en el futuro.

El objetivo del Informe Nº 5 es definir las actividades para disminuir la demanda, aumentar la eficiencia del suministro de agua y reducir al mínimo el déficit.

2. RESUMEN EJECUTIVO

El Reporte Nº4 aborda el balance hídrico de la Provincia de Mendoza, proyectando tres escenarios prospectivos:

- 1. La situación actual, considerando la superficie cultivada actual.
- 2. Un escenario que incluye la totalidad de la superficie, con derecho de riego, cultivada
- 3. Un escenario que contempla una adición del 50% de las hectáreas con derecho.

El balance hídrico se efectúa con un horizonte temporal hacia los años 2030, 2040 y 2050.

La siguiente tabla presenta un resumen del primer y segundo escenario, incluyendo las hectáreas cultivadas, la demanda total y el déficit resultante para los años 2020, 2030, 2040 y 2050.

Tabla 2-1: Resumen - Escenarios 1 y 2.

		Escenario 1				Escenario 2				
	Cuenca	HA. Cultivadas	Oferta Total (Hm³)	Demanda Bruta (Hm³)	Déficit (Hm³)		HA. Cultivadas	Oferta Total (Hm³)	Demanda Bruta (Hm³)	Déficit (Hm³)
	Mendoza	91.824	1.836	2.157	-320		122.272	1.856	2.741	-885
	Tunuyán	141.643	2.538	2.524	14		198.109	2.760	3.405	-645
2020	Diamante	45.280	1.226	1.276	-50	ĺ	73.593	1.298	1.990	-692
	Atuel	53.620	871	997	-126		85.662	871	1.565	-694
	Malargüe	7.839	240	153	87	ĺ	7.839	240	153	87
	Mendoza	91.824	1.739	2.296	-557		122.272	1.760	2.915	-1.155
	Tunuyán	141.643	2.522	2.602	-80		198.109	2.751	3.506	-755
2030	Diamante	45.280	1.196	1.370	-175	Ī	73.593	1.273	2.138	-865
	Atuel	53.620	866	1.032	-166		85.662	866	1.620	-754
	Malargüe	7.839	230	159	71		7.839	230	159	71
	Mendoza	91.824	1.698	2.331	-633		122.272	1.719	2.950	-1.232
	Tunuyán	141.643	2.550	2.667	-117		198.109	2.783	3.590	-807
2040	Diamante	45.280	1.116	1.391	-275		73.593	1.195	2.168	-973
	Atuel	53.620	754	1.054	-300		85.662	754	1.653	-899
	Malargüe	7.839	190	162	28		7.839	190	162	28
	Mendoza	91.824	1.597	2.369	-772		122.272	1.618	2.989	-1.371
	Tunuyán	141.643	2.531	2.733	-202	Ī	198.109	2.769	3.675	-906
2050	Diamante	45.280	998	1.411	-413		73.593	1.078	2.198	-1.120
	Atuel	53.620	724	1.076	-352		85.662	724	1.687	-963
	Malargüe	7.839	150	165	-15		7.839	150	165	-15

3. OBJETIVO DEL INFORME

El Informe Nº 4 está enfocado en la evaluación del déficit, actual y proyectado, resultante de la demanda hídrica actual y proyectada considerando la gestión sustentable del recurso hídrico.

4. CÁLCULO DE NIVELES DE ABASTECIMIENTO SOSTENIBLES

4.1. METODOLOGÍA

La presentación del recurso hídrico muestra una amplia variabilidad tanto estacional (dentro del año) como interanual. Por lo tanto, es esencial realizar una evaluación exhaustiva de las variaciones hidro-climáticas y las tendencias de cambio para comprender, mitigar y adaptarse a las mismas.

La planificación a largo plazo implica definir cuánto es posible abastecer de manera constante cada año y prepararse para enfrentar los cambios.

En el gráfico siguiente se presentan las proyecciones de derrame realizadas por IANIGLA para el río Mendoza, considerando el escenario SSP 5.85 del cambio climático. Si no existiera capacidad de regulación en esa cuenca (que actualmente es de unos 395 hm³), el derrame mínimo proyectado (664 hm³) sería el que define el nivel de abastecimiento sostenible, bajo las condiciones del citado escenario de emisiones.

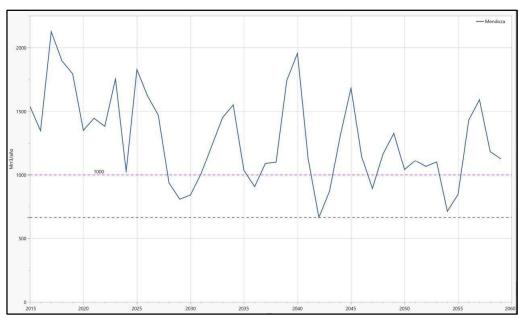


Figura 4-1: Proyección de caudales anuales en el río Mendoza.

A modo de ejemplo teórico, si el nivel de abastecimiento fuera fijado en 1.000 hm³, habría años en los que no sería posible abastecer el nivel propuesto: 2 años en la década del 2020/30, 2 años en la década del 2030/40 y 3 años en la década del 2040/50 (Figura 4-2).

Se define a la confiabilidad como la cantidad de años que es posible cumplir ese nivel de abastecimiento en cada década, por lo tanto, si existen 2 años sobre 10 que no se abastece ese nivel, la confiabilidad es del 80%. Retomando el ejemplo práctico, para un nivel de

abastecimiento de 1.000 hm³ por año, la confiabilidad para cada década sería del 80% para 2020/30; 80% para 2030/40 y del 70% para 2040/50.

Si el sistema posee un volumen de almacenamiento (reservorio de regulación), el mismo debe ser considerado a la hora de estimar su nivel de confiabilidad. El almacenar excedentes de agua en años de derrames mayores para ser usados en los años en los cuales los derrames son menores que el nivel de abastecimiento fijado, permite aumentar esos niveles de abastecimiento e incrementar la confiabilidad del sistema.

En la actualidad la capacidad de regulación (capacidad de los embalses) en los ríos de la provincia es menor que el derrame de sus ríos, por lo tanto, la regulación es estacional, utilizando el agua almacenada en los embalses que excede las demandas del ciclo anterior para satisfacer las demandas de la primavera siguiente.

En el ejemplo anterior, considerando la existencia de embalses de regulación, todos los años en los cuales habría más de 1.000 hm³, los excesos podrían almacenarse para ser usados en los años con menos de 1.000 hm³, lo que elevaría la confiabilidad a un 100% para ese nivel de abastecimiento.

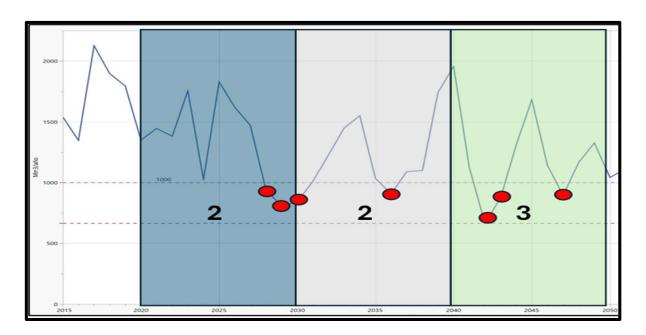


Figura 4-2: Proyección de caudales anuales en el río Mendoza y confiabilidad para un nivel de abastecimiento de 1.000 Mm3 por año.

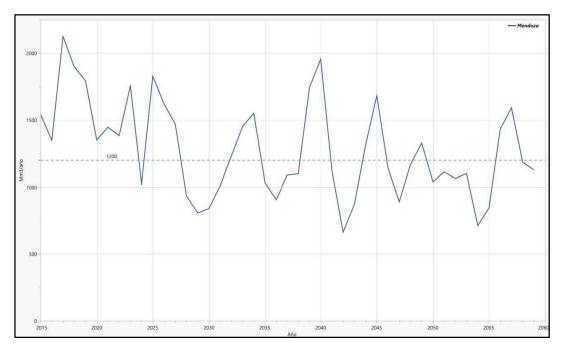


Figura 4-3: Proyección de caudales anuales en el río Mendoza y nivel de abastecimiento de 1200 mm3/año.

Un nivel de abastecimiento de 1.200 hm³, (ver Figura 4-3) tiene la misma cantidad de años por encima y por debajo de ese valor, lo que inicialmente podría sugerir que, si la capacidad de almacenamiento es suficiente, este sería un nivel de abastecimiento con una confiabilidad del 100%.

Sin embargo, esto no es necesariamente así. El cálculo debe considerar escenarios en los que se evalúe una sucesión determinada de años, calculando si en cada año es posible abastecer el nivel propuesto. Esto implica utilizar el almacenamiento existente cuando sea necesario y aumentarlo en los años con excedentes. Es importante tener en cuenta que habrá años con excedentes en los que no será posible almacenar más agua debido a que la capacidad de almacenamiento estará completa, y también habrá años de sequía en los que los embalses no tendrán suficiente agua para completar el abastecimiento requerido. Por lo tanto, para el cálculo de la confiabilidad real de un nivel de abastecimiento se debe considerar estos diversos escenarios.

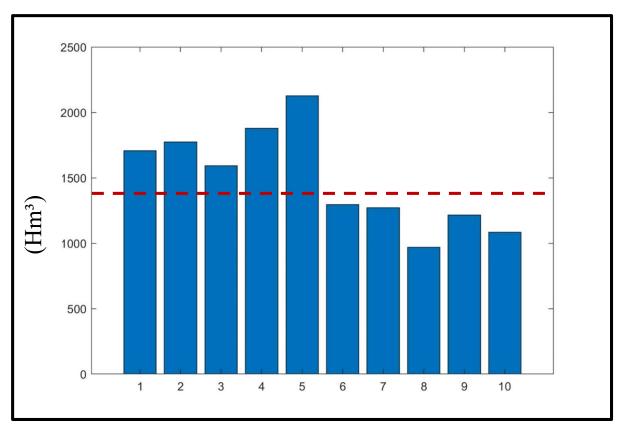


Figura 4-4: Ejemplo de escenario futuro y nivel de abastecimiento propuesto (línea roja).

Se deben simular escenarios considerando una sucesión de diferentes derrames para cada año dentro de una década (ver Figura 4-4). Este proceso considera que el primer año los reservorios se encuentran a la mitad de su capacidad de almacenamiento y se procede a comparar la cantidad de agua recibida con el nivel de abastecimiento propuesto. Si hay excedentes, estos se almacenan, siempre y cuando exista capacidad de hacerlo.

En el ejemplo de la Figura 4-4, hay excedentes hasta el quinto año, lo que lleva a alcanzar la capacidad máxima de almacenamiento después de abastecer las demandas de aguas bajo. A partir del sexto año, se recibe menos agua de la necesaria y entonces se abastece la diferencia con volumen del reservorio hasta que este se vacía completamente.

Este tipo de cálculo, ilustrado para una década, se realiza para una gran cantidad de escenarios (1.000).

Se llevan a cabo dos tipos de simulaciones:

1. Capacidad de almacenamiento fijo, nivel de abastecimiento variable: Se analizan distintos niveles de abastecimiento considerando que la capacidad de almacenamiento es inalterable, inicialmente tomando en cuenta la capacidad existente actualmente.

2. Nivel de abastecimiento fijo, capacidad de almacenamiento variable: Se analiza cómo cambia el nivel de abastecimiento al variar la capacidad de almacenamiento.

Para el análisis de la situación inicial se considera la capacidad de almacenamiento actual, para los escenarios futuros donde se cambia el nivel de abastecimiento. Este aumento del nivel de almacenamiento puede ser mediante embalses o mediante el aumento del almacenamiento en los acuíferos.

Los resultados se resumen para cada década obteniendo los siguientes parámetros operacionales:

- Probabilidad de abastecimiento: la cantidad de años en los que se abasteció el nivel propuesto para cada nivel de abastecimiento.
- Abastecimiento promedio: el promedio anual abastecido.
- Déficit promedio anual: el promedio de todos los años en los que hubo déficit.

Estos escenarios se basan en las proyecciones del agua disponible futura en cada una de las cuencas.

4.2. AGUA DISPONIBLE

El IANIGLA realizó proyecciones de caudales anuales hasta el año 2060 para cada cuenca de la provincia ("Proyecciones del Clima y de la Oferta Hídrica para las Próximas Décadas en la Provincia de Mendoza", 2023). Estas proyecciones son de volúmenes diarios en las siguientes estaciones de aforo (ver Figura 5-5): Guido (Mendoza), Valle de Uco (Tunuyán), La Jaula (Diamante), La Angostura (Atuel), La Barda (Malargüe) y La Gotera (Grande).

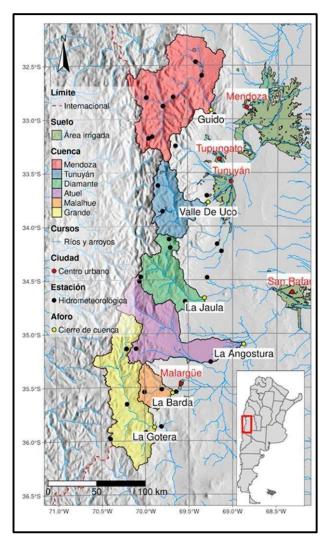


Figura 4-5: Cuencas hídricas usadas para la modelización hidrológica con HBV.IANIGLA. Se marcan los puntos de cierre de estas (círculos amarillos) y las estaciones hidrometeorológicas analizadas y procesadas (círculos negros). (IANIGLA, 2023).

A continuación, se presentan mediante distribución del tipo log-normal, las proyecciones que mejor ajustaron para los caudales de los ríos de la provincia para 2030, 2040 y 2050.

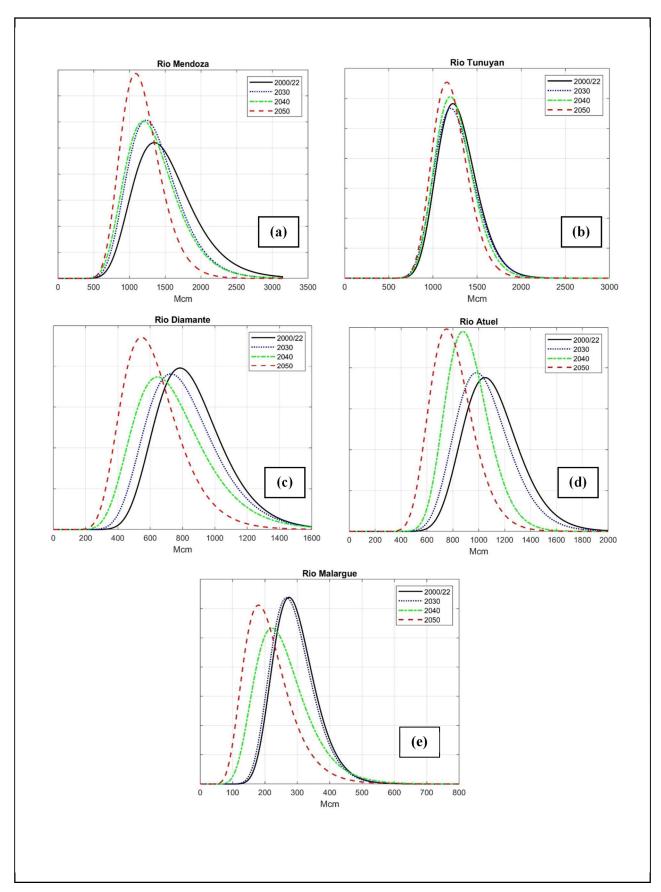


Figura 4-6: Distribución actual (2020) y de la proyección de los caudales anuales en los ríos (a) Mendoza, (b) Tunuyán, (c) Diamante, (d) Atuel y (e) Malargüe para 2030, 2040 y 2050.

Para calcular el Agua Disponible Total para cada cuenca se debe definir la relación existente entre el Agua Disponible Superficial y Subterránea.

En la cuenca del Río Mendoza, existe un aporte al acuífero en la región de precordillera, que no se considera en el punto de cierre de la cuenca en Guido. De acuerdo con balances realizados en la DGI, este aporte se estima en un 5% del volumen anual del río.

En el Río Tunuyán, hay tres aportes que deben ser considerados con las correspondientes estimaciones en porcentaje:

- Arroyos Cordillera Frontal (27%),
- Manantiales (33%),
- Agua subterránea originaria en la cuenca del Río Mendoza (8%).

En el río Diamante existen una serie de aportes que no son considerados en las proyecciones del IANIGLA ya que sus aportes se producen aguas abajo de la estación La Jaula. Corresponden a los arroyos La Faja, Hondo, Carrizalito y aportes pluviales de escorrentía pluvial entre el embalse Agua del Toro y Los Reyunos. En base a datos provistos por la Subdelegación del río Diamante y utilizando las series de caudales de la Subsecretaría de Recursos Hídricos de la Nación y el movimiento del volumen en el sistema de embalses. Los aportes no contabilizados se estiman en un 13% del derrame anual en La Jaula. Para la simulación de los escenarios de oferta para el cálculo del agua disponible, estos aportes se consideran del 10% para tener un margen de seguridad debido a las incertidumbres existentes.

En la tabla a continuación se presentan los percentiles obtenidos para el Agua Disponible Total para cada cuenca.

Tabla 4-1: Percentiles de la distribución actual (2020) y de la proyección de los caudales anuales en los ríos Mendoza, Tunuyán, Diamante, Atuel y Malargüe para 2030, 2040 y 2050.

Cuenca	Percentil (%)	2020 (Hm³)	2030 (Hm³)	2040 (Hm³)	2050 (Hm³)
	5	913,74	850,56	817,82	777,06
	10	1014,1	938,35	905,22	847,47
	25	1206,3	1105,2	1072	979,2
Mendoza	50	1463,4	1326	1294,1	1150
	75	1774,7	1590,4	1561,8	1350,3
	90	2113,1	1874,8	1851,3	1561,5
	95	2344	2067,3	2048,2	1702,3
	5	787,32	732,66	671,89	556,66
	10	846,21	789,27	718,01	600,7
	25	954,27	893,46	801,98	681,94
Atuel	50	1090,9	1025,7	907,06	785,36
	75	1246,7	1177,2	1025,7	904,23
	90	1406,8	1333,5	1146,3	1027,2
	95	1511,6	1436,1	1224,6	1108,1
	5	610,9	549,3	468,7	404
	10	667	605,7	523,8	448,5
	25	779,2	719,8	637,3	539,5
Diamante	50	920,5	866,2	786,5	657,6
	75	1082,1	1036,7	964,8	797,1
	90	1256,5	1224	1165,1	952,1
	95	1382,3	1360,8	1314,2	1066,4
	5	200,13	193,02	144,96	115,65
	10	216,98	209,78	162,9	130,94
	25	248,25	240,98	197,85	161,02
Malargüe	50	288,4	281,2	245,64	202,69
	75	334,95	328,04	304,85	255,05
	90	383,52	377,12	370,65	314
	95	415,65	409,7	416,29	355,29
	5	1276	1244,2	1249,9	1223
	10	1346,2	1314,5	1316,9	1284,8
	25	1474,7	1443,5	1439,3	1397
Tunuyán	50	1636	1605,7	1592,5	1536,3
	75	1819,2	1790,4	1765,9	1692,8
	90	2006,2	1979,2	1942,4	1850,7
	95	2128,1	2102,5	2057,3	1952,9

Es posible ver que el promedio va disminuyendo para cada década en forma diferente en cada cuenca.

Tabla 4-2: Percentiles de la distribución actual (2020) y de la proyección de los caudales anuales totales en la provincia de Mendoza para 2030, 2040 y 2050.

	Percentil (%)	2020 (Hm³)	2030 (Hm³)	2040 (Hm³)	2050 (Hm³)
	5	3 788.1	3 569.7	3 353.2	3 076.4
	10	4 090.5	3 857.6	3 626.8	3 312.4
	25	4 662.7	4 402.9	4 148.5	3 758.6
Total	50	5 399.1	5 104.8	4 825.8	4 332.0
	75	6 257.7	5 922.7	5 623.0	4 999.5
	90	7 166.1	6 788.7	6 475.8	5 705.6
	95	7 781.6	7 376.4	7 060.6	6 184.9

Tabla 4-3: Mediana de la distribución actual (2020) y de la proyección de los caudales anuales totales en la provincia de Mendoza para 2030, 2040 y 2050. Se presenta la reducción esperada para cada década con relación a la situación actual.

Cuenca	2020 (Hm³)	2030 (Hm³)	2040 (Hm³)	2050 (Hm³)
Mendoza	1463,4	1326,0	1294,1	1150,0
Atuel	1090,9	1025,7	907,1	785,4
Tunuyán	1636,0	1605,7	1592,5	1536,3
Diamante	920,5	866,2	786,5	657,6
Malargüe	288,4	281,2	245,6	202,7
Total	5399,1	5104,8	4825,8	4332,0
Reducción %		5	11	20

En la tabla anterior se ve que la cantidad de agua total en toda la provincia disminuirá progresivamente en un 5, 11 y 20% en el 2030, 2040 y 2050 respectivamente.

4.3. NIVEL DE ABASTECIMIENTO SUSTENTABLE - CÁLCULOS

4.3.1. RÍO MENDOZA

Las primeras simulaciones se realizaron para la capacidad actual de almacenamiento, 395 Mm³, cambiando el nivel de abastecimiento entre 800 y 2.000 Mm³ por año. Los resultados son presentados en la Figura 4-7.

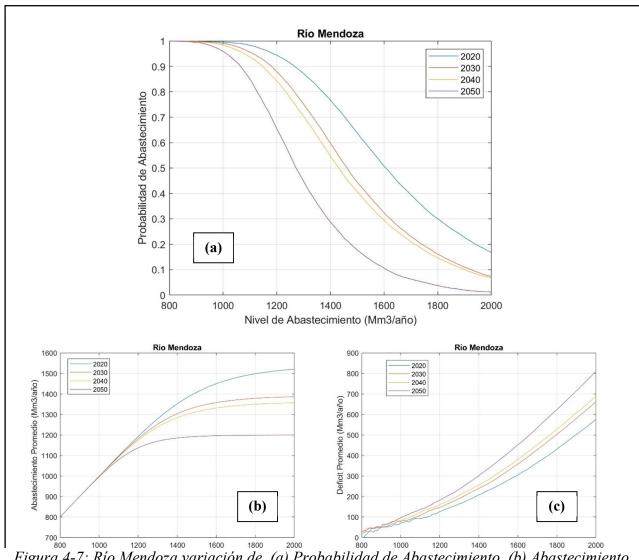


Figura 4-7: Río Mendoza variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (395 mm3) para 2020, 2030, 2040 y 2050.

La Tabla 4-4 muestra los valores obtenidos para dos niveles de confiabilidad, 90 y 80%, en cada década.

Tabla 4-4: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la cuenca del Río Mendoza para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050). Capacidad de Almacenamiento, 395 y 800 mm³.

Capacidad de	Nivel de Confiabilidad		909	%			80)%	
Almacenamiento	Década	20201	2030	2040	2050	2020	2030	2040	2050
	Nivel de Abastecimiento (Hm³)	1270	1180	1150	1070	1370	1270	1230	1130
395 Mm ³	Abastecimiento Promedio (Hm³)	1255	1166	1136	1057	1333	1235	1197	1101
	Déficit Promedio (Hm³)	151	137	138	121	188	172	170	146
	Nivel de Abastecimiento (Hm³)	1380	1270	1240	1070	1470	1350	1320	1130
800 Mm ³	Abastecimiento Promedio (Hm³)	1360	1253	1222	1065	1424	1308	1277	1115
	Déficit Promedio (Hm³)	186	171	172	116	233	212	213	143

En una segunda etapa se realizaron simulaciones tomando una capacidad de almacenamiento de 800 Mm³ la cual duplica la actual de 395 mm³ (Figura 4-8). Aumentando el almacenamiento al doble, para una confiabilidad del 90%, se aumenta el nivel de abastecimiento en alrededor 100 mm³ en 2020, pero ese aumento se anula para el 2050 (Tabla 4-4).

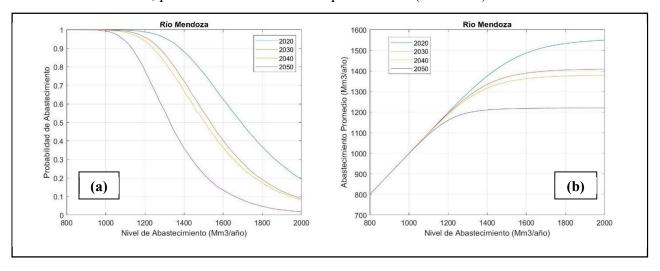


Figura 4-8: Río Mendoza variación de, (a) Probabilidad de Abastecimiento y (b) Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija que duplica la existente (800 mm3) para 2020, 2030, 2040 y 2050.

¹ El valor no representa el abastecimiento que fue realizado durante los últimos años, sino cual hubiera sido el nivel de abastecimiento constante sostenible.

4.3.2. RÍO TUNUYÁN

Las primeras simulaciones se realizaron para la capacidad actual de almacenamiento, 276 mm³, cambiando el nivel de abastecimiento entre 1.000 y 2.200 mm³ por año. Los resultados son presentados en la Figura 4-9.

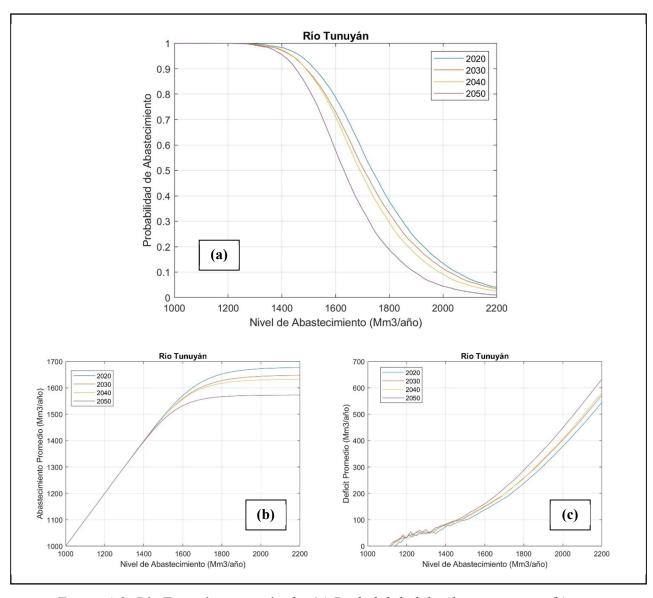


Figura 4-9: Río Tunuyán variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (276 mm³) para 2020, 2030, 2040 y 2050.

La Tabla 4-5 muestra los valores obtenidos para dos niveles de confiabilidad, 90 y 80%, en cada década.

Tabla 4-5: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la cuenca del Río Tunuyán para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050), 276 y 600 Mm³.

Capacidad de	Nivel de Confiabilidad		90	%			80	1%	
Almacenamiento	Década	2020 ²	2030	2040	2050	2020	2030	2040	2050
	Nivel de Abastecimiento (Hm³)	1520	1490	1490	1450	1590	1550	1550	1510
276 Mm ³	Abastecimiento Promedio (Hm³)	1510	1479	1480	1440	1563	1526	1525	1485
	Déficit Promedio (Hm³)	104	104	102	96	129	127	124	120
	Nivel de Abastecimiento (Hm³)	1600	1560	1560	1510	1650	1620	1610	1560
600 Mm ³	Abastecimiento Promedio (Hm³)	1585	1547	1546	1498	1619	1589	1580	1532
	Déficit Promedio (Hm³)	130	128	125	115	157	158	150	141

En una segunda etapa se realizaron simulaciones tomando una capacidad de almacenamiento de 600 Mm³ la cual más que duplica la actual de 276 Mm³ (Figura 4-10). Aumentando el almacenamiento al doble, para una confiabilidad del 90%, se aumenta el nivel de abastecimiento es alrededor 80 Mm³ en 2020, pero ese aumento disminuye para el 2050 a 60 Mm³ (Tabla 4-5).

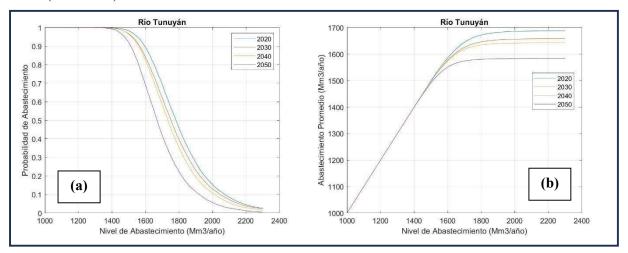


Figura 4-10: Río Tunuyán variación de, (a) Probabilidad de Abastecimiento y (b) Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija que duplica la existente (600 mm³) para 2020, 2030, 2040 y 2050.

² el valor no representa el abastecimiento que fue realizado durante los últimos años, sino cual hubiera sido el nivel de abastecimiento constante sostenible.

4.3.3. RÍO ATUEL

Para el análisis de los derrames proyectados del Río Atuel se tomó como punto de referencia y cierre de la cuenca en La Angostura, aguas arriba del sistema de embalses del río. No obstante, resulta apropiado realizar un análisis complementario que incluya los volúmenes de agua a la salida del embalse Valle Grande, esto permite ajustar el balance hídrico a los derrames y erogaciones que efectivamente se registran a la salida del embalse.

Para ello, se lleva a cabo un estudio que relaciona los volúmenes anuales de derrame del río en La Angostura con los volúmenes a la salida de Valle Grande. Con base en esta relación, se estima la oferta sostenible de escurrimientos superficiales para cada década a futuro.

Tabla 4-6: Derrames en La Angostura y erogaciones del embalse Valle Grande.

G: 1	Volúmenes en hm³/año						
Ciclo Hidrológico	La Angostura	Valle Grande					
2000/2001	1427	1265					
2001/2002	1435	1354					
2002/2003	1590	1474					
2003/2004	1176	1034					
2004/2005	1044	916					
2005/2006	1797	1631					
2006/2007	1509	1337					
2007/2008	1073	927					
2008/2009	1154	1045					
2009/2010	1012	939					
2010/2011	735	626					
2011/2012	940	681					
2012/2013	780	689					
2013/2014	735	579					
2014/2015	884	567					
2015/2016	993	777					
2016/2017	855	805					
2017/2018	696	611					
2018/2019	593	592					
2019/2020	671	474					
2020/2021	643	568					

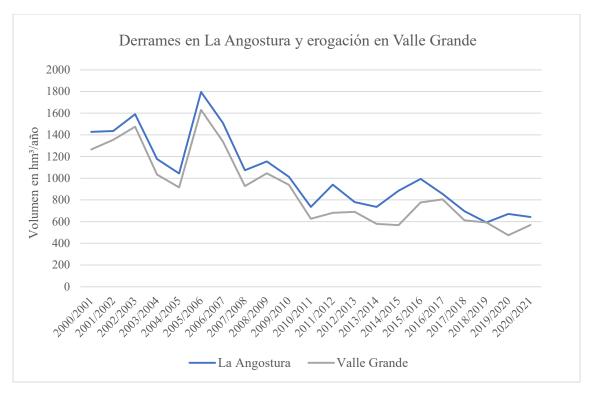


Figura 4-11: Derrames en La Angostura y volumen erogado por Valle Grande.

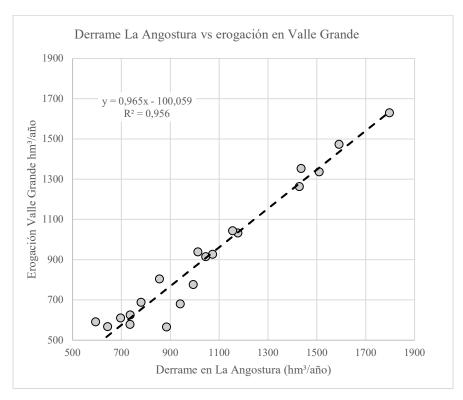


Figura 4-12: Relación entre los derrames en La Angostura y volumen erogado por Valle Grande.

A continuación, se presentan los resultados del análisis de agua superficial sostenible a futuro:

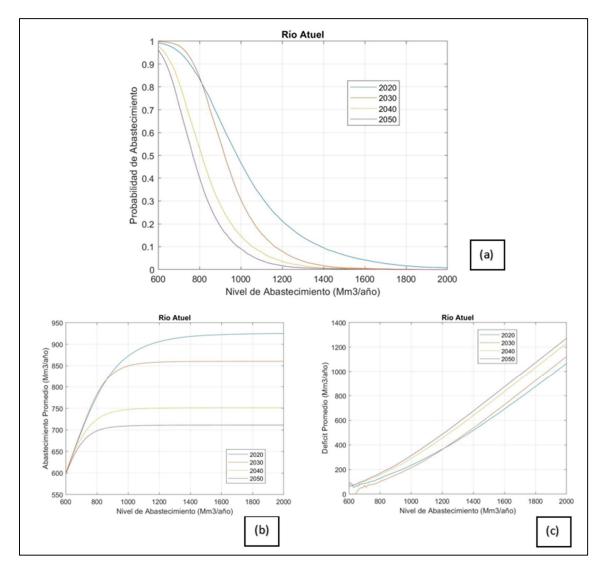


Figura 4-13: Río Atuel variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (352 mm³) para 2020, 2030, 2040 y 2050.

Al considerar el volumen sostenible a la salida del embalse Valle Grande como el nivel de abastecimiento proyectado y manteniendo constante la superficie cultivada a futuro, escenario sin cambios el déficit proyectado para cada una de las décadas analizadas queda de la siguiente manera, los mismos son expresados en hectómetros cúbicos por año para el percentil 50, y los niveles de confiabilidad del 80% y del 90%.

Tabla 4-7: Balance hídrico en hm³ para el abastecimiento correspondiente al percentil 50.

Nivel de Confiabilidad
Década
Nivel de Abastecimiento
Volumen Sostenible de Agua Subterránea (según informe 2.2)
Demanda Proyectada
Déficit Promedio

Percentil 50%									
2020	2030	2030 2040 2050							
859	821	709	672						
51	51	49	49						
997	997 1 032 1 054 1 076								
-87	-160	-296	-355						

Tabla 4-8: Balance hídrico hm³ para el abastecimiento correspondiente al nivel de confiabilidad de 90% y 80%.

Nivel de Confiabilidad
Década
Nivel de Abastecimiento
Volumen Sostenible de
Agua Subterránea (según informe 2.2)
Demanda Proyectada
Déficit Promedio

90%								
2020	2030	2040	2050					
750	770	660	635					
51	51	49	49					
997	1032	1054	1076					
-196	-211	-344	-392					

	80%								
2020	2030	2050							
820	815	705	675						
51	51	49	49						
997	1032	1054	1076						
-126	-166	-300	-352						

La Tabla 4-9 muestra además, el abastecimiento promedio para los dos niveles de confiabilidad antes mencionados.

Tabla 4-9: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la cuenca del Río Atuel para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050), 352 y 700 mm³.

Capacidad de	Nivel de Confiabilidad		90	%		80%			
Almacenamiento	Década	20203	2030	2040	2050	2020	2030	2040	2050
	Nivel de Abastecimiento (Hm³)	750	770	660	635	820	815	705	675
352 Mm ³	Abastecimiento Promedio (Hm³)	739	761	652	627	791	793	684	655
	Déficit Promedio (Hm³)	113	94	89	169	144	114	110	102
	Nivel de Abastecimiento (Hm³)	835	825	715	685	895	865	755	715
700 Mm ³	Abastecimiento Promedio (Hm³)	820	813	704	674	860	837	728	692
	Déficit Promedio (Hm³)	148	115	111	103	177	136	133	118

25

³ el valor no representa el abastecimiento que fue realizado durante los últimos años, sino cual hubiera sido el nivel de abastecimiento constante sostenible.

En una segunda etapa se realizaron simulaciones tomando una capacidad de almacenamiento de 700 Mm³ la cual duplica la actual de 352 mm³ (Figura 4-14). Aumentando el almacenamiento al doble, para una confiabilidad del 90%, se aumenta el nivel de abastecimiento en alrededor 85 Mm³ en 2020, pero ese aumento disminuye para el 2050 a 50 Mm³ (Tabla 5-6).

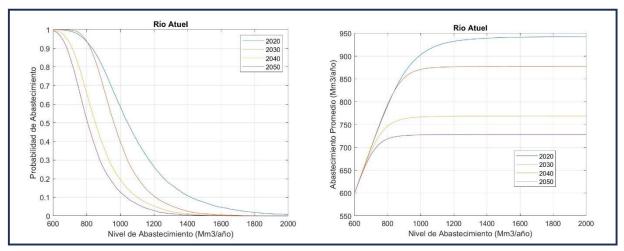


Figura 4-14: Río Atuel variación de, (a) Probabilidad de Abastecimiento y (b) Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija que duplica la existente (700 mm3) para 2020, 2030, 2040 y 2050.

4.3.4. RÍO DIAMANTE

Las primeras simulaciones se realizaron para la capacidad actual de almacenamiento, 544 Mm³, cambiando el nivel de abastecimiento entre 600 y 1.600 Mm³ por año. Los resultados son presentados en la Figura 4-13.

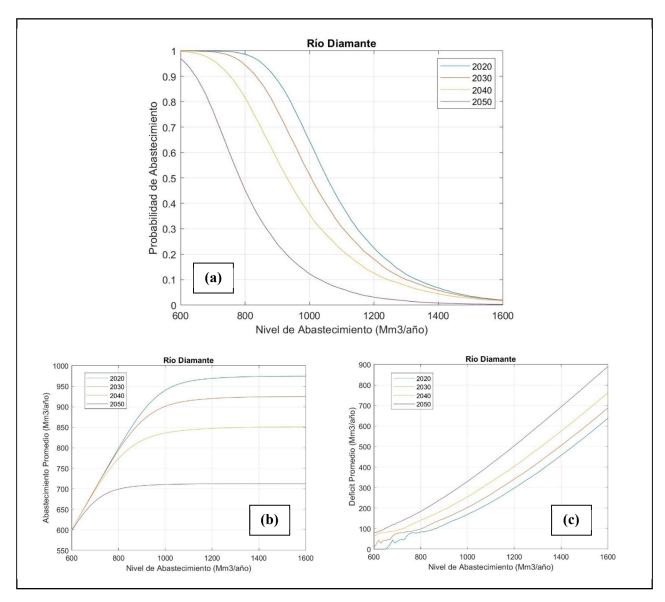


Figura 4-15: Río Diamante variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (544 mm³) para 2020, 2030, 2040 y 2050.

La Tabla 4-7 muestra los valores obtenidos para dos niveles de confiabilidad, 90 y 80%, en cada década.

Tabla 4-10: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la cuenca del Río Diamante para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050), 544 y 1100 mm³.

Capacidad de	Nivel de Confiabilidad		90	2%		80%				
Almacenamiento	Década	2020 ⁴	2030	2040	2050	2020	2030	2040	2050	
	Nivel de Abastecimiento (Hm³)	890	830	750	650	940	890	810	690	
544 Mm ³	Abastecimiento Promedio (Hm³)	879	819	739	639	912	860	780	665	
	Déficit Promedio (Hm³)	114	115	115	103	140	145	146	122	
	Nivel de Abastecimiento (Hm³)	950	890	810	690	990	940	860	730	
1100 Mm ³	Abastecimiento Promedio (Hm³)	934	875	795	678	958	906	827	703	
	Déficit Promedio (Hm³)	143	145	146	121	163	169	169	143	

En una segunda etapa se realizaron simulaciones tomando una capacidad de almacenamiento de 1100 Mm³ la cual duplica la actual de 544 mm³ (Figura 4-16). Aumentando el almacenamiento al doble, para una confiabilidad del 90%, se aumenta el nivel de abastecimiento en alrededor 60 mm³ en 2020, pero ese aumento disminuye para el 2050 a 40 mm³ (Tabla 4-10).

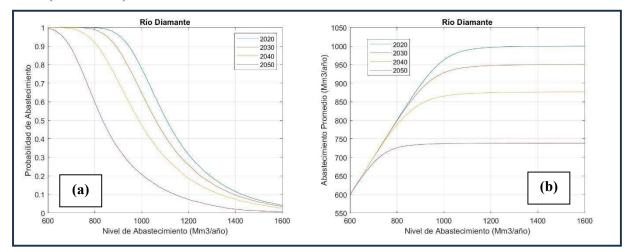


Figura 4-16: Río Diamante variación de, (a) Probabilidad de Abastecimiento y (b) Abastecimiento Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija que duplica la existente (1100 Mm3) para 2020, 2030, 2040 y 2050.

⁴ el valor no representa el abastecimiento que fue realizado durante los últimos años, sino cual hubiera sido el nivel de abastecimiento constante sostenible.

4.3.5. RÍO MALARGÜE

Las primeras simulaciones se realizaron para la capacidad actual de almacenamiento, 0 Mm³, cambiando el nivel de abastecimiento entre 100 y 600 mm³ por año. Los resultados son presentados en la Figura 4-17.

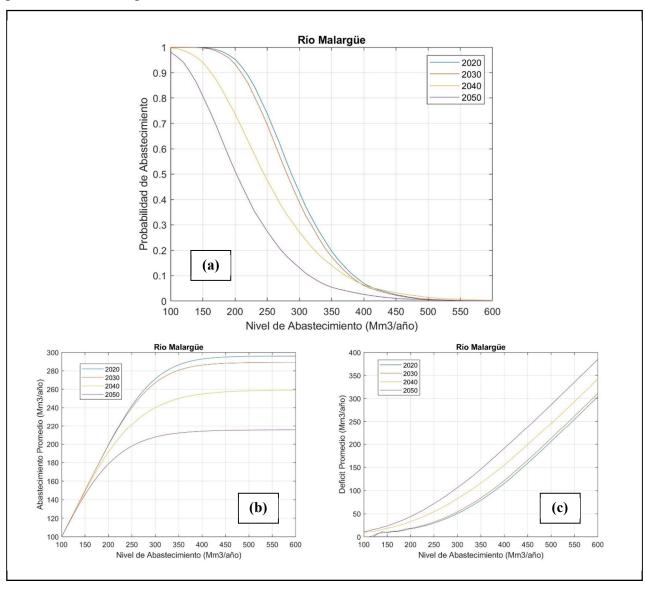


Figura 4-17: Río Malargüe variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (0 mm³) para 2020, 2030, 2040 y 2050.

La Tabla 4-10 muestra los valores obtenidos para dos niveles de confiabilidad, 90 y 80%, en cada década.

Tabla 4-11: Nivel de Abastecimiento, Abastecimiento Promedio y Déficit Promedio en la cuenca del Río Malargüe para Niveles de confiabilidad del 90 y 80% (2020, 2030, 2040 y 2050), 0 y 200 mm³.

Capacidad de	Nivel de Confiabilidad		90	%		80%				
Almacenamiento	Década	20205	2030	2040	2050	2020	2030	2040	2050	
	Nivel de Abastecimiento (Hm³)	220	210	160	130	240	230	190	150	
Sin almacenamiento	Abastecimiento Promedio (Hm³)	218	208	158	128	234	225	184	145	
	Déficit Promedio (Hm³)	21	20	21	18	27	25	29	24	
	Nivel de Abastecimiento (Hm³)	290	280	240	200	300	290	260	210	
200 Mm ³	Abastecimiento Promedio (Hm³)	285	276	236	196	291	282	249	203	
	Déficit Promedio (Hm³)	37	36	39	35	42	41	49	41	

En una segunda etapa se realizaron simulaciones tomando una capacidad de almacenamiento de 200 mm³ (Figura 4-17). Incorporando almacenamiento, para una confiabilidad del 90%, se aumenta el nivel de abastecimiento en alrededor 70 Mm³ para todo el periodo de estudio (Tabla 4-11).

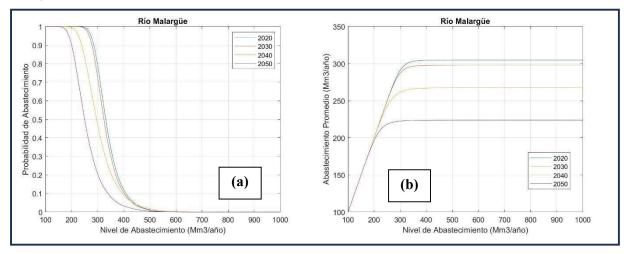


Figura 4-18: Río Malargüe variación de, (a) Probabilidad de Abastecimiento, (b) Abastecimiento Promedio y (c) Déficit Promedio, para distintos Niveles de Abastecimiento y Capacidad de Almacenamiento Fija (0 mm³) para 2020, 2030, 2040 y 2050.

_

⁵ El valor no representa el abastecimiento que fue realizado durante los últimos años, sino cual hubiera sido el nivel de abastecimiento constante sostenible.

5. RESUMEN DE LA DEMANDA (REPORTE N°3)

5.1. DEMANDA POBLACIONAL

La siguiente tabla presenta la demanda poblacional para la situación actual y la demanda proyectada para los años 2030, 3040 y 2050. La proyección supone que el consumo poblacional per cápita (352 lpcd) y el porcentaje de pérdidas dentro del sistema de abastecimiento se mantendrá como está en la situación actual.

Tabla 5-1: Demanda poblacional actual y proyectada (hm³).

	Proyección de la demanda poblac	ional. Volum	ien en hm³/aí	ĭo.	
Cuenca	Década	2022 (Hm³)	2030 (Hm³)	2040 (Hm³)	2050 (Hm³)
	Población proyectada	1.301.969	1.406.011	1.518.648	1.641.180
Día Mandana	Demanda Neta	167,3	180,6	195,1	210,9
Río Mendoza	Pérdidas del sistema 46%	144,9	156,5	169,1	182,7
	Consumo Poblacional proyectado	312,2	337,2	364,2	393,6
	Población proyectada	139.765	154.198	169.612	186.122
Río Tunuyán	Demanda Neta	18	19,8	21,8	23,9
Superior	Pérdidas del sistema 40%	12	13,3	14,6	16
	Consumo Poblacional proyectado	30	33,1	36,4	39,9
	Población proyectada	279.005	301.332	324.681	349.188
Río Tunuyán	Demanda Neta	35,8	38,7	41,7	44,9
Inferior	Pérdidas del sistema 40%	24,2	26,1 28,2		30,3
	Consumo Poblacional proyectado	60	64,8	69,9	75,1
	Población proyectada	151.544	160.227	169.101	178.212
Río Diamante	Demanda Neta	19,5	20,6	20,6 21,7	
Kio Diamante	Pérdidas del sistema 37%	11,5	12,1	12,8	13,5
	Consumo Poblacional proyectado	31	32,7	34,5	36,4
	Población proyectada	109.143	114.497	119.935	125.485
Río Atuel	Demanda Neta	14	14,7	15,4	16,1
Kio Atuei	Pérdidas del sistema 26%	5	5,2	5,5	5,7
	Consumo Poblacional proyectado	19	19,9	20,9	21,8
	Población proyectada	33.107	36.182	39.430	42.873
Río Malargüe	Demanda Neta	6,3	6,8	7,4	8,1
Kiu iviaiai gue	Pérdidas del sistema 26%	2,2	2,4	2,6	2,9
	Consumo Poblacional proyectado	8,5	9,3	10,1	11
	Población proyectada	2.014.533	2.172.447	2.341.407	2.523.060
Provincia	Demanda Neta	260,9	281,2	303,1	326,8
	Suministro	460,7	497	536	577,8

5.2. DEMANDA AGRÍCOLA

La siguiente tabla presenta la demanda agrícola para la situación actual (según DGI por el modelo WEAP) y la demanda proyectada, asumiendo que el único efecto se debe al cambio ETo causado por el aumento de temperatura debido al cambio climático.

2020 2030 2040 2050 Década Demanda Demanda Demanda Demanda Demanda Demanda Demanda Demanda Rio Neta Bruta Neta Bruta Neta Bruta Neta Bruta (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) (hm^3) 823,9 776,3 1.778,6 823,3 1.886,1 1.887,2 824,4 1.888,4 Mendoza Tunuyán 423,7 1.242,9 436,3 1.279,8 445,5 1.306,6 454,6 1.333,3 **Superior** 1.142,5 557,3 1.056,9 569,0 1.078,9 1.100,9 Tunuyán Inferior 544,0 580,6 379,3 1.230,0 1.321,5 412,8 418,0 1.355,1 Diamante 407,6 1.338,3 Atuel 407,8 972,4 422,0 1.006,1 430,5 1.026,4 439,0 1.046,6 Malargüe 64,8 144,0 67,5 150,1 68,4 152,0 69,2 153,8 Total 2.595,9 6.510,4 2.714,2 6.700,4 2.750,0 6.789,3 2.785,9 6.878,3

Tabla 5-2: Demanda agrícola proyectada (hm³).

5.3. OTRA DEMANDA POR TIPO

La otra demanda por tipo es toda la demanda industrial y turística, la demanda para la situación actual fue proporcionada por la DGI (Anexo Nº 8 del Informe Nº 3.2), la proyección se realizó de acuerdo con el siguiente supuesto:

> Actividad relacionada con la industria y la población

Tasa de crecimiento anual del agua decenal del 1% hasta el año 2040 y del 0,5% de 2040 a 2050.

> Actividad relacionada con infraestructura

Tasa de crecimiento anual del agua decenal del 0,5% hasta el año 2050.

La siguiente tabla resume la demanda proyectada por cuenca:

Tabla 5-3: Otro tipo demanda proyectada (hm³).

Década / Cuenca	Tunuyán Inferior	Tunuyán Superior	Diamante	Malargüe	Mendoza	Atuel	Provinci a
	hm³/Año	hm³/Año	hm³/Año	hm³/Año	hm³/Año	hm³/Año	hm³/Año
2020	34,48	13,97	14,58	0,07	65,93	5,63	134,66
2030	38,07	15,41	16,08	0,07	72,42	6,11	148,16
2040	42,04	16,99	17,73	0,08	79,58	6,64	163,06
2050	46,42	18,74	19,55	0,09	87,46	7,22	179,48

5.4. DEMANDA AMBIENTAL EN CUENCA RIO MALARGÜE

En la cuenca del Rio Malargüe, existe un uso que considera la demanda ambiental de la laguna de Llancanelo. Está considerado mediante un empadronamiento de categoría Eventual de 2478.15 ha totales. Esta situación debe ser considerada a los fines de interpretar el valor de "exceso" o "superávit" de agua que el análisis del balance proyectado genera y los potenciales déficit a futuro.

5.5. RESUMEN DE LAS PROYECCIONES DE LA DEMANDA

Tabla 5-4: Resumen de las proyecciones de la demanda (hm³).

Década		2030				2040 2050						
Rio	Poblaciona l (hm³)	Agricultur a (hm³)	Otra (hm³	Total (hm³)	Poblaciona l (hm³)	Agricultur a (hm³)	Otra (hm³	Total (hm³)	Poblaciona l (hm³)	Agricultur a (hm³)	Otra (hm³	Total (hm³)
Mendoza	337	1.886	72	2.295	364	1.887	80	2.331	394	1.888	87	2.369
Tunuyán Superior	33	1.280	15	1.328	36	1.307	17	1.360	40	1.333	19	1.392
Tunuyán Inferior	65	1.057	38	1.160	70	1.079	42	1.191	75	1.101	46	1.222
Diamante	33	1.322	16	1.370	35	1.338	18	1.391	36	1.355	20	1.411
Atuel	20	1.006	6	1.032	21	1.026	7	1.054	22	1.047	7	1.076
Malargüe	9	150	0	159	10	152	0	162	11	154	0	165
Total	497	6.700	148	7.345	536	6.789	163	7.488	578	6.878	179	7.636

6. PROYECCIÓN EL DÉFICIT ESPERADO EN CADA CUENCA

La oferta hídrica sostenible proyectada presentada en el Capítulo 4 y la demanda proyectada presentada en el Capítulo 5, son los componentes del balance hídrico de la provincia.

Se detecta que en algunas de las cuencas se produce el proceso de recirculación del agua, entendiendo mejor este proceso podemos evitar errores de cálculo que sobrestiman el déficit en el balance hídrico.

6.1. OFERTA RECIRCULADA

6.1.1. ASPECTOS GENERALES

El nivel de recirculación del agua es un factor fundamental en el análisis de la gestión del recurso hídrico, a nivel de cuenca. Se refiere al proceso mediante el cual el agua se utiliza en múltiples aplicaciones antes de su descarga final. Por ejemplo, en el sector agrícola, el agua utilizada para el riego puede ser reciclada o recirculada y utilizada nuevamente en otros usos, lo que reduce la cantidad de agua directa necesaria para la irrigación. Un ejemplo claro de este fenómeno es la infiltración y desagües en las zonas de regadío que, agua abajo, terminan emergiendo y generando nuevos cauces donde sus aguas son asignadas y utilizadas nuevamente. Del mismo modo, en la industria, el agua utilizada en un proceso puede ser tratada y reutilizada en otras etapas del mismo proceso o en procesos diferentes como ser el riego de un acre, lo que disminuye la demanda total de agua.

La consideración de la reutilización interna del agua tiene un impacto significativo en el análisis de déficit hídrico de una cuenca, ya que reduce el requerimiento de agua, en la medida que satisface parte de la demanda hídrica. Es importante distinguir entre la reutilización interna, que ocurre dentro de un sector de la cuenca, y la reutilización externa, que implica el uso de agua residual tratada de un sitio de demanda en otro sitio de demanda, considerada en el análisis como reusó de agua.

En resumen, la consideración de la recirculación de agua en los Balances Hídricos de cuenca es fundamental en la gestión integrada de los recursos hídricos. Su consideración permite proyectar de una mejor manera el balance interno del agua en la cuenca y los potenciales impactos que tendría un proceso de mejora o modernización del sistema.

En las cuencas donde se detecta este tipo de oferta hídrica es en el río Mendoza, Tunuyán Superior y río Diamante. En el caso del río Atuel, si bien están identificados los drenajes y posee un modelo de generación de caudales, al no tener usos reasignados de agua, no se consideran como demanda no contabilizada.

6.1.2. RÍO MENDOZA

Del Balance Hídrico del río Mendoza se extraen las zonas (del Modelo WEAP) o cauces de uso de aguas recirculadas o que se conforman por ellas, llamadas de vertientes o desagües, son las siguientes: Hijuela Unificada Nueva Sánchez y el Arroyo El Carrizal en margen derecha. Para el análisis de identifican, del modelo WEAP, las Zonas generadoras de aguas recirculadas, bajo el supuesto que el remante producto de la ineficiencia, tanto de conducción como de aplicación, contribuyen a la oferta de estas. Estas son: Cruz de Piedra, Arroyo Carrizal, Rodeo – Beltrán y Sánchez.

Tabla 6-1: Cálculo de la oferta de agua recirculada para la cuenca del río Mendoza (hm³).

Escenario	Década	Demanda Neta (hm³/año)	Demanda Bruta (hm³/año)	Oferta recirculada (hm³/año)
	2020	28,0	75,2	47,2
Sin Cambio	2030	29,5	79,4	49,9
	2040	29,5	79,4	49,9
	2050	29,5	79,4	49,9

En lo que respecta al agua de reúso, las que provienen del tratamiento de las aguas residuales urbanas, propiamente dicho de las plantas de Paramillo y Campo Espejo, el déficit hídrico que se genera es considerado en el déficit de agua total de la cuenca.

6.1.3. RÍO TUNUYÁN

Es en la cuenca del río Tunuyán Superior donde existe el mayor volumen de agua recirculada. El análisis considera la totalidad de las zonas de regadío en la cuenca, como sitios potenciales de generación de agua recirculada. Es por ello que el análisis considera la demanda neta y bruta total de la cuenca, tanto los usos agrícolas, poblacional y otros (usos industriales).

Cabe aclarar que, en los escenarios de mejora del sistema, el aumento en la eficiencia en el uso del agua, cambian las relaciones existentes en el balance hídrico actual, generando un impacto en las proporciones de agua recirculada y asignadas aguas abajo.

Tabla 6-2: Cálculo de la oferta de agua recirculada para la cuenca del río Tunuyán.

Escenario	Década	Demanda Neta (hm³/año)	Demanda Bruta (hm³/año)	Oferta recirculada (hm³/año)
	2020	455,7	1286,9	820,0
Sin Cambio	2030	471,5	1328,3	844,4
	2040	484,2	1359,9	862,1
	2050	497,2	1392,0	879,8

^{*} Considera la demanda industrial (otra) con un potencial de recirculación del 20%.

6.1.4. RÍO DIAMANTE

Es en la cuenca del río Diamante, existe una extensa zona en margen derecha y la parte sur de la cuenca que es la generadora de los volúmenes recirculados y parte de la misma se abastece directamente de ella. La zona corresponde a las siguientes zonas: Sauce de las Rosas, Grande, Sauce de la Leona, Cortaderal, Rama Caída Gonzales, Cubillos, Hijuela Salinas, Vila, Day Forte, Cejas del Monte, Hijuela Vicuña, Canal Retamito, Canal Resolana e Hijuela Española Cabe aclarar que estas zonas no reciben aguas de desagües, estas son las generadoras de las mismas, a través de la infiltración en los canales y la ineficiencia de riego.

Al igual que lo sucedido para el Tunuyán Superior, los escenarios de mejora del sistema donde se pretende un aumento en la eficiencia en el uso del agua cambian las relaciones existentes en el balance hídrico actual, generando un impacto en las proporciones de agua recirculada y asignadas aguas abajo, pudiendo afectar zonas de riego.

Tabla 6-3: Cálculo de la oferta de agua recirculada para la cuenca del río Diamante.

Escenario	Década	Demanda Neta (hm³/año)	Demanda Bruta (hm³/año)	Oferta recirculada (hm³/año)
	2020	109,8	376,9	267,2
Sin Cambia	2030	118,0	405,1	287,1
Sin Cambio	2040	119,5	410,3	290,8
	2050	121,0	415,5	294,5

6.2. DÉFICIT PROYECTADO, SITUACIÓN ACTUAL SIN MEJORA

El déficit proyectado en este informe está calculado según la oferta sostenible, no significa que fuera el déficit real de años anteriores ya que no necesariamente se proporcionó un volumen sostenible.

La demanda proyectada fue calculada en el Informe 3.2, y algunas correcciones se presentan en los capítulos 4.2 y 6 de este informe.

El sector de demanda más importante es la demanda agrícola.

La demanda agrícola se calculó de acuerdo con las eficiencias supuestas de conducción y aplicación en las diferentes cuencas de la provincia, y sin variar las hectáreas cultivadas supuestas.

El déficit se presenta para niveles de confiabilidad del 80% y 90%.

Tabla 6-4: Cálculo del Déficit - Río Mendoza (hm³).

	Nivel de Confiabilidad (%)		90%				80%			
	Década	2020	2030	2040	2050		2020	2030	2040	2050
	Nivel de Abastecimiento (Hm³)	1.270	1.180	1.150	1.070		1.370	1.270	1.230	1.130
	*Oferta de Agua Tratada (ACRE) (Hm³)	102 (106)	102 (119)	102 (129)	102 (139)		102 (106)	102 (119)	102 (129)	102 (139)
Mendoza	Oferta recirculada (Hm³)	47	50	50	50		47	50	50	50
	Volumen Sostenible de Agua Subterránea (según informe 2.2) (Hm³)	317	317	316	316		317	317	316	316
	Demanda Proyectada (Hm³)	2.157	2.296	2.331	2.369		2.157	2.296	2.331	2.369
	Deficit Promedio (Hm³)	-420	-647	-713	-832		-320	-557	-633	-772

^{*102 (106) -} Capacidad máxima del volumen de tratamiento real (Volumen potencial de agua tratada

Tabla 6-5: Cálculo del Déficit - Río Tunuyán (hm³).

	Nivel de Confiabilidad (%)		90%				80%			
	Década	2020	2030	2040	2050	2020	2030	2040	2050	
	Nivel de Abastecimiento (Hm³)	1.520	1.490	1.490	1.450	1.590	1.550	1.550	1.510	
Tunuyan	Oferta recirculada (Hm³)	820	844	862	880	820	844	862	880	
	Volumen Sostenible de Agua Subterránea (según informe 2.2) (Hm³)	128	128	138	142	128	128	138	142	
	Demanda Proyectada (Hm³)	2.524	2.602	2.667	2.733	2.524	2.602	2.667	2.733	
	Deficit Promedio (Hm³)	-56	-139	-177	-262	14	-79	-117	-202	

Tabla 6-6: Cálculo del Déficit - Río Diamante (hm³).

	Nivel de Confiabilidad (%)		90%			80%			
	Década	2020	2030	2040	2050	2020	2030	2040	2050
	Nivel de Abastecimiento (Hm³)	890	830	750	650	940	890	810	690
Diamante	Oferta recirculada (Hm³)	267	287	291	295	267	287	291	295
	Volumen Sostenible de Agua Subterránea (según informe 2.2) (Hm³)	19	19	15	14	19	19	15	14
	Demanda Proyectada (Hm³)	1.276	1.370	1.391	1.411	1.276	1.370	1.391	1.411
	Déficit Promedio (Hm³)	-100	-235	-335	-453	-50	-175	-275	-413

⁼ Demanda neta potable * 66%)

Tabla 6-7: Cálculo del Déficit - Río Atuel (hm³).

	Nivel de Confiabilidad (%)
	Década
Atuel	Nivel de Abastecimiento (Hm³)
	Volumen Sostenible de Agua Subterránea (según informe 2.2) (Hm³)
	Demanda Proyectada (Hm³)
	Déficit Promedio (Hm³)

	90%					
2020	2030	2040	2050			
750	770	660	635			
51	51	49	49			
997	1.032	1.054	1.076			
-196	-211	-354	-392			

	80%					
2020	2030	2040	2050			
820	815	705	675			
51	51	49	49			
997	1.032	1.054	1.076			
-126	-166	-300	-352			

Tabla 6-8: Cálculo del Déficit - Río Malargüe (hm³).

	Nivel de Confiabilidad (%)	
Malargüe	Década	
	Nivel de Abastecimiento (Hm³)	
	Demanda Proyectada (Hm³)	
	Deficit Promedio (Hm³)	

90%				
2020	2030	2040	2050	
220	210	160	130	
153	159	162	165	
67	51	-2	-35	

80%					
2020	2030	2040	2050		
240	230	190	150		
153	159	162	165		
87	71	28	-15		

De las tablas anteriores, el déficit actual (2020), cuando se refiere a ofertas sostenibles y un nivel de confiabilidad del 80%, en la cuenca del río Mendoza ronda los 300 hm³.

En Diamante existe un déficit algo moderado, de 50 hm³.

Tunuyán, Atuel y Malargüe se encuentran en condiciones de superávit para la demanda actual. Sin acciones para reducir el Déficit, éste crecerá y en 2050 para todas las cuencas será imposible abastecer de manera sostenible la demanda proyectada.

7. POTENCIAL DE REDUCCIÓN DE LA DEMANDA DE AGUA

El potencial existente para reducir la demanda y el déficit (sin cambiar el tipo de cultivo existente) es mejorar la eficiencia de conducción y aplicación.

En este capítulo presentaremos el rango de potencial de reducción de la demanda aumentando la eficiencia de conducción y aplicación de manera separada y en conjunto. Es importante mencionar que estos son valores teóricos que dependen de muchos aspectos, tales como:

- La capacidad de realizar las inversiones requeridas (privadas, públicas).
- El tamaño mínimo de la propiedad que permite la mejora (riego tradicional a goteo).
- Análisis económico para determinar el cultivo óptimo a mejorar.

De acuerdo con el déficit proyectado, el Informe Nº 5 definirá la alternativa óptima para eliminar ese déficit hídrico, considerando la capacidad de implementación de dicha alternativa.

7.1. EFICIENCIA DE APLICACIÓN

La eficiencia de aplicación depende de los métodos de riego dentro de la finca, al considerar que para el método de riego más primitivo que es el riego por inundación, la eficiencia oscila entre el 40% y el 50%, y la eficiencia máxima del 85% para el riego por goteo.

La siguiente tabla presenta las eficiencias promedio de aplicación en las cuencas.

· ·	
Cuenca	Eficiencia promedio (%)
Mendoza	54,5%
Tunuyán Superior	43,0%
Tunuyán Inferior	53,5%
Diamante	49,0%
Atuel	50,0%
Malargüe	55.0%

Tabla 7-1: Eficiencias promedio de Aplicación.

La siguiente tabla presenta la demanda neta y bruta en 2050, cuando se supone que la eficiencia de la aplicación es del 85%.

Tabla 7-2: Mejora de la eficiencia de la Aplicación.

Cuenca	Mendoza	Tunuyán Superior	Tunuyán Inferior	Diamant e	Atuel	Malargü e
Total Ha.	91.824	64.507	77.135	45.280	53.620	7.839
Demanda Neta (Hm³)	824	455	581	418	439	69
Eficiencia promedio (%)	54,5%	43,0%	53,5%	49,0%	50,0%	55,0%
Demanda Bruta (Hm³)	1.888	1.333	1.219	1.355	1.047	154
Eficiencia promedio mejorada (%)	85,0%	85,0%	85,0%	85,0%	85,0%	85,0%
Demanda Bruta mejorada (Hm³)	1.143	675	767	781	613	100
Delta Demanda - ahorro (Hm³)	746	659	452	574	433	54

7.2. EFICIENCIA DE CONDUCCIÓN

La eficiencia de la conducción depende del estado del sistema de conducción, considerando un 100% de eficiencia para tubería, un 97% para canales impermeables y un amplio rango de eficiencias para canal de tierra que varía entre el 40% y el 90%.

La siguiente tabla presenta la eficiencia promedio de Conducción en cada cuenca según el modelo WEAP.

Tabla 7-3: Eficiencias promedio de Conducción.

Cuenca	Eficiencia promedio (%)
Mendoza	90,5%
Tunuyán Superior	89,0%
Tunuyán Inferior	91,0%
Diamante	67,5%
Atuel	84,5%
Malargüe	81,5%

La siguiente tabla presenta la demanda neta y bruta en 2050, cuando se supone que la eficiencia de la conducción es del 95% - lo que significa que todos los canales son impermeables.

Tabla 7-4: Mejora de la eficiencia de la Conducción.

Cuenca	Mendoza	Tunuyán Superior	Tunuyán Inferior	Diamante	Atuel	Malargüe
Total Ha.	91.824	64.507	77.135	45.280	53.620	7.839
Demanda Neta (Hm³)	824	455	581	418	439	69
Eficiencia promedio (%)	90,5%	89,0%	91,0%	67,5%	84,5%	81,5%
Demanda Bruta (Hm³)	1.888	1.333	1.219	1.355	1.047	154
Eficiencia promedio mejorada (%)	97,0%	97,0%	96,0%	95,0%	95,0%	95,0%
Demanda Bruta mejorada (Hm³)	1.677	1.094	1.131	898	928	132
Delta Demanda - ahorro (Hm³)	211	240	88	457	119	21

7.3. EFICIENCIA DE CONDUCCIÓN + EFICIENCIA DE APLICACIÓN (MEZCLA)

La siguiente tabla presenta la demanda bruta en 2050 al mejorar la eficiencia de la aplicación al 85% y la eficiencia de la conducción al 95%.

Tabla 7-5: Mejora de la eficiencia de la Conducción y Aplicación.

Cuenca	Mendoza	Tunuyán Superior	Tunuyán Inferior	Diamante	Atuel	Malargüe
Total Ha.	91.824	64.507	77.135	45.280	53.620	7.839
Demanda Neta (Hm³)	824	455	581	418	439	69
Eficiencia promedio (%)	54,5%	43,0%	53,5%	49,0%	50,0%	55,0%
Eficiencia promedio de la aplicación (%)	90,5%	89,0%	91,0%	67,5%	84,5%	81,5%
Demanda Bruta (Hm³)	1.888	1.333	1.219	1.355	1.047	154
Eficiencia promedio de la aplicación mejorada (%)	85,0%	85,0%	85,0%	85,0%	85,0%	85,0%
Eficiencia promedio de la conducción mejorada (%)	97,0%	97,0%	96,0%	95,0%	95,0%	95,0%
Demanda Bruta mejorada (Hm³)	1.013	553	712	518	613	86
Delta Demanda - ahorro (Hm³)	875	780	507	837	433	68

La siguiente tabla presenta un resumen del potencial de reducción de la demanda de agua.

Tabla 7-6: Resumen del potencial de reducción de la demanda de agua.

Cuenca	Mendoza	Tunuyán Superior	Tunuyán Inferior	Diamante	Atuel	Malargüe
Total Ha.	91.824	64.507	77.135	45.280	53.620	7.839
Demanda Neta (Hm³)	824	455	581	418	439	69
Demanda Bruta (Hm³)	1.888	1.333	1.219	1.355	1.047	154
Demanda Bruta aplicación mejorada (Hm³)	1.143	675	767	781	613	100
Demanda Bruta conducción mejorada (Hm³)	1.677	1.094	1.131	898	928	132
Demanda Bruta conducción y aplicación mejorada (Hm³)	1.013	553	712	518	613	86

La máxima reducción de la demanda se logra mejorando las eficiencias tanto de conducción como de aplicación, permitiendo la reducción de la demanda en un promedio del 49% en todas las cuencas.

8. BALANCES HÍDRICOS PROSPECTIVOS

Los balances hídricos prospectivos presentados en este informe definen por un lado la situación real proyectada para los próximos 30 años (2050), la situación real se refiere a la superficie cultivada (según el Balance Hídrico del DGI).

Por otro lado, la superficie cultivada total no es la totalidad de la superficie con derecho de riego. Es por ello que se evalúa el escenario donde se requiere abastecer la totalidad de la superficie con derecho.

El tercer balance presentará una situación promedio entre los balances hídricos anteriormente descritos.

La demanda poblacional e industrial se consideran iguales en todos los escenarios.

8.1. ESCENARIO NÚMERO 1 – SITUACIÓN ACTUAL

El escenario de situación actual considera los supuestos del Balance Hídrico respecto a la superficie cultivadas por cultivo, la conducción y eficiencia de aplicación (este escenario ya fue presentado en el capítulo 7 - "POTENCIAL DE REDUCCIÓN DE LA DEMANDA DE AGUA".

8.1.1. RÍO MENDOZA

La siguiente tabla presenta el total de hectáreas (cultivadas y no cultivadas) en Río Mendoza por fuente.

Ha. No HA. Cultivadas **Fuente** Total Ha. Cultivadas Dotada en Dique Cipolletti (Superficial) 80.747 16.404 64.343 Dotada en Alta Montaña 5.100 3.604 1.496 17.829 5.378 12.451 **Dotada por otras fuentes** 11.900 Agua Subterránea exclusiva MD 1.204 10.696 6.696 3.858 2.838 Agua Subterránea exclusiva MI 122,272 30.448 91.824 Total, Cuenca

Tabla 8-1: Hectáreas por fuente, Río Mendoza.

El balance hídrico compara la demanda total con la oferta total sostenible e indica el déficit resultante, es importante mencionar que este déficit no es el déficit real (en 2020 por ejemplo) porque los volúmenes realmente suministrados no necesariamente fueron sostenibles, la tabla presenta el déficit proyectado para 2030, 2040 y 2050.

Tabla 8-2: Balance Hídrico, Río Mendoza - Ha Cultivadas.

Fuente	Agrícol a Neta (Hm³)	Agrícol a Bruta (Hm³)	Poblaciona l+ Industrial Bruta (Hm³)	Demand a Bruta Total (Hm³)	Oferta recirculad a (Hm³)	Oferta de aguas subterránea s (Hm³)	Oferta Sostenibl e (Hm³)	Deficit (Hm³)
Dotada en Dique Cipolletti (Superficial)	551	1.292						
Dotada en Alta Montaña	18	34						
Dotada por otras fuentes	110	286						
Agua Subterránea exclusiva MD	76	128						
Agua Subterránea exclusiva MI	23	39						
Total 2020	776	1.779	378	2.157	149	317	1.370	-320
Dotada en Dique Cipolletti (Superficial)	584	1.371						
Dotada en Alta Montaña	19	36						
Dotada por otras fuentes	116	302						
Agua Subterránea exclusiva MD	80	136						
Agua Subterránea exclusiva MI	24	41						
Total 2030	823	1.886	410	2.296	152	317	1.270	-557
Dotada en Dique Cipolletti (Superficial)	585	1.372						
Dotada en Alta Montaña	19	36						
Dotada por otras fuentes	116	302						
Agua Subterránea exclusiva MD	80	136						
Agua Subterránea exclusiva MI	24	41						
Total 2040	824	1.887	444	2.331	152	316	1.230	-633
Dotada en Dique Cipolletti (Superficial)	585	1.372						
Dotada en Alta Montaña	19	36						
Dotada por otras fuentes	116	303						
Agua Subterránea exclusiva MD	80	136						
Agua Subterránea exclusiva MI	24	41						
Total 2050	824	1.888	481	2.369	152	316	1.130	-772

8.1.2. Río Tunuyán

El balance hídrico de Tunuyán está compuesto por Tunuyán Superior y Tunuyán Inferior, en la siguiente tabla se presenta el total de Ha. para ambas cuencas.

Tabla 8-3: Hectáreas por fuente, Río Tunuyán.

Fuente	Total Ha.	Ha. No Cultivadas	HA. Cultivadas
Dique Valle de Uco	18.275	3.003	15.272
Manantiales	8.271	1.055	7.216
A° Cordillera Frontal	25.533	3.480	22.053
Agua subterránea	33.921	13.955	19.966
Total, Tunuyán Superior	85.999	21.492	64.507
Agua Subterránea exclusiva	26.016	9.311	16.705
Dotada en dique Tiburcio Benegas	86.094	25.663	60.431
Total, Tunuyán Inferior	112.110	34.974	77.135
Total, Tunuyán	198.109	56.466	141.643

Tabla 8-4: Balance Hídrico, Río Tunuyán - Ha Cultivadas.

Tunuyán 2020 - Fuente	Agrícol a Neta (Hm³)	Agrícol a Bruta (Hm³)	Poblaciona l+ Industrial Bruta (Hm³)	Demanda Bruta Total (Hm³)	Oferta recirculad a (Hm³)	Oferta de aguas subterráneas (Hm³)	Oferta Sostenible (Hm³)	Défici t (Hm³)
Tunuyán Inferior	544	1.142	94	1.237				
Tunuyán Superior	424	1.243	44	1.287				
Total 2020	968	2.385	138	2.524	820	128	1.590	14
Tunuyán Inferior	557	1.171	103	1.273				
Tunuyán Superior	436	1.280	49	1.328				
Total 2030	994	2.450	151	2.602	844	128	1.550	-79
Tunuyán Inferior	569	1.195	112	1.307				
Tunuyán Superior	445	1.307	53	1.360				
Total 2040	1.014	2.501	165	2.667	862	138	1.550	-117
Tunuyán Inferior	581	1.219	122	1.341				
Tunuyán Superior	455	1.333	59	1.392				
Total 2050	1.035	2.553	180	2.733	880	142	1.510	-202

8.1.3. RÍO DIAMANTE

La siguiente tabla presenta el total de hectáreas (cultivadas y no cultivadas) en Río Diamante por fuente.

Tabla 8-5: Hectáreas por fuente, Río Diamante.

Fuente	Total Ha.	Ha. No Cultivadas	HA. Cultivadas
Dotada en dique Galileo Vitali	66.537	24.750	41.786
Dotada por desagües y drenajes	6.301	3.144	3.158
Agua Subterránea exclusiva	755	419	336
Total, Cuenca	73.593	28.313	45.280

Tabla 8-6: Balance Hídrico, Río Diamante - Ha Cultivadas.

Fuente	Agrícol a Neta (Hm³)	Agrícol a Bruta (Hm³)	Poblaciona 1+ Industrial Bruta (Hm³)	Demand a Bruta Total (Hm³)	Oferta recirculad a (Hm³)	Oferta de aguas subterránea s (Hm³)	Oferta Sostenibl e (Hm³)	Déficit (Hm³)
Dotada en dique Galileo Vitali	351	1.143						
Dotada por desagües y drenajes	26	80						
Agua Subterránea exclusiva	3	7						
Total 2020	379	1.230	46	1.276	267	19	940	-50
Dotada en dique Galileo Vitali	377	1.228						
Dotada por desagües y drenajes	28	86						
Agua Subterránea exclusiva	3	8						
Total 2030	408	1.322	49	1.370	287	19	890	-175
Dotada en dique Galileo Vitali	382	1.243						
Dotada por desagües y drenajes	28	87						
Agua Subterránea exclusiva	3	8						
Total 2040	413	1.338	52	1.391	291	15	810	-275
Dotada en dique Galileo Vitali	386	1.259						
Dotada por desagües y drenajes	28	88						
Agua Subterránea exclusiva	3	8						
Total 2050	418	1.355	56	1.411	295	14	690	-413

8.1.4. RÍO ATUEL

La siguiente tabla presenta el total de hectáreas (cultivadas y no cultivadas) en Río Atuel por fuente.

Tabla 8-7: Hectáreas por fuente, Río Atuel.

Fuente	Total Ha.	Ha. No Cultivadas	HA. Cultivadas
Dotada en dique Valle Grande	83.369	31.521	51.848
El Sosneado y La Junta	2.293	521	1772
Total, Cuenca	85.662	32.042	53.620

Tabla 8-8: Balance Hídrico, Río Atuel - Ha Cultivadas.

Fuente	Agrícol a Neta (Hm³)	Agrícol a Bruta (Hm³)	Poblaciona l+ Industrial Bruta (Hm³)	Demand a Bruta Total (Hm³)	Oferta recirculad a (Hm³)	Oferta de aguas subterránea s (Hm³)	Oferta Sostenibl e (Hm³)	Déficit (Hm³)
Dotada en dique Valle Grande	396,41	945,72						
El Sosneado y La Junta	11,42	26,65						
Total 2020	407,82	972,38	25	997	0	51	820	-126
Dotada en dique Valle Grande	410,16	978,50						
El Sosneado y La Junta	11,82	27,60						
Total 2030	421,98	1.006,10	26	1.032	0	51	815	-166
Dotada en dique Valle Grande	418,42	998,19						
El Sosneado y La Junta	12,06	28,17						
Total 2040	430,48	1.026,36	28	1.054	0	49	705	-300
Dotada en dique Valle Grande	426,68	1.017,89						
El Sosneado y La Junta	12,31	28,74						
Total 2050	438,98	1.046,63	29	1.076	0	49	675	-352

8.1.5. RÍO MALARGÜE

La siguiente tabla presenta el total de hectáreas (cultivadas y no cultivadas) en Río Malargüe por fuente.

Tabla 8-9: Hectáreas por fuente, Río Malargüe.

Fuente	Total Ha.	Ha. No Cultivadas	HA. Cultivadas
Cañada Colorada	2.997	0	2.997
El Alamito y El Chacay	4.842	0	4.842
Total, Cuenca	7.839	0	7.839

Tabla 8-10: Balance Hídrico, Río Malargüe - Ha Cultivadas.

Fuente	Agrícola Neta (Hm³)	Agrícola Bruta (Hm³)	Poblacional + Industrial Bruta (Hm³)	Demanda Bruta Total (Hm³)	Oferta recirculada (Hm³)	Oferta Sostenible (Hm³)	Déficit (Hm³)
Cañada Colorada	28,18	65,69					
El Alamito y El Chacay	36,63	78,35					
Total 2020	64,81	144,04	9	153	0	240	87
Cañada Colorada	29,36	68,45					
El Alamito y El Chacay	38,18	81,68					
Total 2030	67,55	150,12	9	159	0	230	71
Cañada Colorada	29,72	69,28					
El Alamito y El Chacay	38,66	82,69					
Total 2040	68,38	151,97	10	162	0	190	28
Cañada Colorada	30,08	70,11					
El Alamito y El Chacay	39,14	83,71					
Total 2050	69,21	153,83	11	165	0	150	-15

8.2. ESCENARIO NÚMERO 2 – TOTAL DERECHOS

Este escenario se diferencia del anterior en que considera la totalidad de la superficie, con derecho de riego cultivada, lo que supone una mayor demanda. Las demandas poblacionales e industriales se mantienen iguales que en el escenario anterior.

Los resultados de este escenario se presentan mediante una tabla resume los resultados (Demanda Neta y Bruta, y Déficit Calculado).

En todas las cuencas las hectáreas no cultivadas con derecho de riego se distribuyeron según la relación de cada cultivo sobre el total en cada UAM, excluyendo Malargüe que no lo tiene (según el modelo WEAP).

Las siguientes tablas presentan el total de hectáreas considerando este escenario (Tabla 8-11), y el balance hídrico a nivel de cuenca para 2020 (actual), 2030, 2040 y 2050 (Tabla 8-12).

Tabla 8-11: Escenario 2 – Ha. Cultivadas.

Escenario	Escena	Escenario 2		
Cuenca	Ha. No Cultivadas	HA. Cultivadas	HA. Cultivadas	
Mendoza	30.448	91.824	122.272	
Tunuyán Superior	21.492	64.507	85.999	
Tunuyán Inferior	34.974 77.135		112.110	
Tunuyán	56.466 141.643		198.109	
Diamante	28.313	45.280	73.593	
Atuel	32.042	53.620	85.662	
Malargüe	0	7.839	7.839	

Tabla 8-12: Escenario 2 – Balance Hídrico.

		Agrícola	Agrícola	Poblacional	Demanda	Oferta	Oferta de	Oferta	
	Cuenca	Neta (Hm³)	Bruta (Hm³)	+ Industrial Bruta (Hm³)	Bruta Total (Hm³)	recirculada (Hm³)	aguas subterráneas (Hm³)	Sostenible (Hm³)	Déficit (Hm³)
	Mendoza	1.039	2.363	378	2.741	169	317	1.370	-885
	Tunuyán Superior	565	1.606	44	1.650				
2020	Tunuyán Inferior	791	1.660	94	1.755				
	Tunuyán	1.356	3.266	138	3.405	1.042	128	1.590	-645
	Diamante	614	1.944	46	1.990	339	19	940	-692
	Atuel	638	1.540	25	1.565	0	51	820	-694
	Malargüe	65	144	9	153	0		240	87
	Mendoza	1.101	2.505	410	2.915	173	317	1.270	-1.155
	Tunuyán Superior	582	1.654	49	1.702				
2030	Tunuyán Inferior	810	1.701	103	1.804				
	Tunuyán	1.393	3.355	151	3.506	1.073	128	1.550	-755
	Diamante	660	2.089	49	2.138	365	19	890	-865
	Atuel	660	1.594	26	1.620	0	51	815	-754
	Malargüe	68	150	9	159	0		230	71
	Mendoza	1.102	2.507	444	2.950	173	316	1.230	-1.232
	Tunuyán Superior	594	1.688	53	1.742				
2040	Tunuyán Inferior	827	1.736	112	1.848				
20.0	Tunuyán	1.422	3.425	165	3.590	1.095	138	1.550	-807
	Diamante	668	2.116	52	2.168	369	15	810	-974
	Atuel	673	1.626	28	1.653	0	49	705	-899
	Malargüe	68	152	10	162	0		190	28
	Mendoza	1.103	2.508	481	2.989	173	316	1.130	-1.371
	Tunuyán Superior	606	1.723	59	1.782				
2050	Tunuyán Inferior	844	1.772	122	1.893				
2030	Tunuyán	1.451	3.495	180	3.675	1.118	142	1.510	-906
	Diamante	677	2.143	56	2.198	374	14	690	-1.121
	Atuel	687	1.658	29	1.687	0	49	675	-961
	Malargüe	69	154	11	165	0		150	-15

8.3. ESCENARIO NÚMERO 3

Este escenario presenta la incorporación del 50% de las hectáreas incultas con derecho de riego.

Tabla 8-13: Escenario 3 – Ha. Cultivadas.

Escenario	Escena	rio 1	Escenario 2	Escenario 3
Cuenca	Ha. No Cultivadas	HA. Cultivadas	HA. Cultivadas	HA. Cultivadas
Mendoza	30.448	91.824	122.272	107.048
Tunuyán Superior	21.492	64.507	85.999	75.253
Tunuyán Inferior	34.974	77.135	112.110	94.622
Tunuyán	56.466	141.643	198.109	169.876
Diamante	28.313	45.280	73.593	59.436
Atuel	32.042	53.620	85.662	67.608
Malargüe	0	7.839	7.839	7.839

Tabla 8-14: Escenario 3 – Balance Hídrico.

	Cuenca	Agrícola Neta (Hm³)	Agrícola Bruta (Hm³)	Poblacional + Industrial Bruta (Hm³)	Demanda Bruta Total (Hm³)	Oferta recirculada (Hm³)	Oferta de aguas subterráneas (Hm³)	Oferta Sostenible (Hm³)	Déficit (Hm³)
	Mendoza	908	2.071	378	2.449	159	317	1.370	-602
	Tunuyán Superior	495	1.425	44	1.469				
2020	Tunuyán Inferior	668	1.401	94	1.496				
	Tunuyán	1.162	2.826	138,45	2.964	931	128	1.590	-316
	Diamante	497	1.587	46	1.633	303	19	940	-371
	Atuel	517	1.243	25	1.268	0	51	820	-397
	Malargüe	65	144	9	153	0		240	87
	3.7	0.0	2.107	440	2 (0.7	1.0	215	1.250	0.7.6
	Mendoza	962	2.196	410	2.605	162	317	1.270	-856
	Tunuyán Superior	509	1.467	49	1.515				
2030	Tunuyán Inferior	684	1.436	103	1.539				
	Tunuyán	1.193	2.902	151,38	3.054	959	128	1.550	-417
	Diamante	534	1.705	49	1.754	326	19	890	-520
	Atuel	535	1.286	26	1.312	0	51	815	-446
	Malargüe	68	150	9	159	0		230	71
	24 1	0.62	2.105	444	2 (41	1(2	216	1.220	022
	Mendoza	963	2.197	444	2.641	162	316	1.230	-932
	Tunuyán Superior	520	1.497	53	1.551				
2040	Tunuyán Inferior	698	1.466	112	1.578				
	Tunuyán	1.218	2.963	165,33	3.128	979	138	1.550	-462
	Diamante	541	1.727	52	1.779	330	15	810	-624
	Atuel	546	1.312	28	1.340	0	49	705	-586
	Malargüe	68	152	10	162	0		190	28
	M	064	2 100	401	2 (50	1(2	216	1 120	1.051
	Mendoza	964	2.198	481	2.679	162	316	1.130	-1.071
	Tunuyán Superior	531	1.528	59	1.587				
2050	Tunuyán Inferior	712	1.496	122	1.617				
	Tunuyán	1.243	3.024	180,26	3.204	999	142	1.510	-554
	Diamante	547	1.749	56	1.805	334	14	690	-767
	Atuel	557	1.338	29	1.367	0	49	675	-643
	Malargüe	69	154	11	165	0		150	-15

8.4. RESUMEN DE BALANCES HÍDRICOS PROSPECTIVOS

Se evaluaron 3 escenarios, la siguiente tabla presenta las cifras principales de esos escenarios.

Tabla 8-15: Resumen

		Escenario 1		Escena	rio 2	Escena	Escenario 3		
	Cuenca	HA. Cultivadas	Déficit (Hm³)	HA. Cultivadas	Déficit (Hm³)	HA. Cultivadas	Déficit (Hm³)		
	Mendoza	91.824	-320	122.272	-885	107.048	-602		
	Tunuyán	141.643	14	198.109	-645	169.876	-316		
2020	Diamant e	45.280	-50	73.593	-692	59.436	-371		
	Atuel	53.620	-126	85.662	-694	67.608	-397		
	Malargü e	7.839	87	7.839	87	7.839	87		
	Mendoza	91.824	-557	122.272	-1.155	107.048	-856		
	Tunuyán	141.643	-80	198.109	-755	169.876	-417		
2030	Diamant e	45.280	-175	73.593	-865	59.436	-520		
	Atuel	53.620	-166	85.662	-754	67.608	-446		
	Malargü e	7.839	71	7.839	71	7.839	71		
				I					
	Mendoza	91.824	-633	122.272	-1.232	107.048	-932		
	Tunuyán	141.643	-117	198.109	-807	169.876	-462		
2040	Diamant e	45.280	-275	73.593	-974	59.436	-624		
	Atuel	53.620	-300	85.662	-899	67.608	-586		
	Malargü e	7.839	28	7.839	28	7.839	28		
	Mendoza	91.824	-772	122.272	-1.371	107.048	-1.071		
	Tunuyán	141.643	-202	198.109	-906	169.876	-554		
2050	Diamant e	45.280	-413	73.593	-1.121	59.436	-767		
	Atuel	53.620	-352	85.662	-961	67.608	-643		
	Malargü e	7.839	-15	7.839	-15	7.839	-15		

9. ASPECTOS METODOLÓGICOS DE LA ESTIMACIÓN DE COSTOS DE MEJORAS

9.1. ASPECTOS GENERALES

En el siguiente apartado se plantea la definición de los componentes del plan de inversiones para la posterior estimación de costos asociados a cada componente. El objetivo es desarrollar un plan de inversiones de mejoras complementarias. Para ello es necesario realizar una evaluación de los sistemas de riego actuales. Luego, se prevé incluir un análisis de costos asociados con la actualización y mejoras previstas a realizar en la red de distribución.

9.2. DEFINICIÓN DEL PLAN DE INVERSIONES

A continuación, se presentan los diferentes componentes del plan de inversión. Se presentan en función de la clasificación administrativa y operativa que componen las redes de distribución de agua de la provincia de Mendoza: red primaria, secundaria y terciaria. También se presentan los componentes de gestión transversales a las distintas redes de distribución, la infraestructura que permite la interacción entre la oferta superficial y subterránea; y se menciona la infraestructura, de índole privada, dentro de las parcelas para la aplicación directa del agua de riego a los cultivos.

9.2.1. RED PRIMARIA

Se define red primaria a la infraestructura que permite la captación del agua de los ríos, conducción, distribución, regulación y control administrados por el Departamento General de Irrigación, a través de sus Subdelegaciones y Jefatura de Zona.

Mejora red primaria

Se pretende el aumento en la eficiencia de conducción de agua, reduciendo pérdidas y optimizando los tiempos de respuesta en grandes canales.

- Impermeabilización de la red primaria: Reducción de pérdidas en canales de distribución. Comprende aquellos canales de distribución que transportan entre 5 m³/s a 15 m³/s y más.
- Unificación de obras de toma y conducción: Al combinar múltiples puntos de captación en uno y unificar diferentes tramos de conducción, se mejora la eficiencia hidráulica y se reduce la necesidad de mantenimiento.
- **Obras de distribución:** Fundamentales para llevar agua desde embalses y zonas de captación de agua hasta áreas de cultivo.

Flexibilización de red primaria

Implica adaptarse a distintos escenarios de distribución y fluctuaciones en la demanda que puedan presentarse en las áreas de cultivo. Permite una distribución dinámica del agua, facilitando la respuesta a cambios en la demanda y asegurando un suministro eficiente.

- **Mejora de la infraestructura existente:** Actualización y optimización de elementos físicos de la red, esto incluye canales, tuberías y secciones de control para optimizar su eficiencia y capacidad de respuesta.
- Construcción de reservorios en red primaria: Depósitos de agua para garantizar suministro continúo del recurso hídrico.
- Sistemas de gestión de red primaria: Herramientas para monitorear y controlar el flujo de agua. Cuenta de agua por inspección.
- Estructuras de medición y control en red primaria: instalación de dispositivos para garantizar la distribución del agua de la forma prevista.
- Medidas contra el vandalismo: Implementación de seguridad para prevenir robos y
 destrucción de la infraestructura y así garantizar la correcta distribución del recurso
 hídrico.

9.2.2. RED SECUNDARIA

Se define red secundaria a la infraestructura que permite la conducción, distribución, regulación y control del agua desde la toma sobre la red primaria hasta los cauces menores o directamente los usuarios. Es administrada directamente por las inspecciones de cauce, a través de sus estructuras administrativas.

Mejora red secundaria

Busca mejorar la eficiencia en la conducción del agua desde canales primarios hasta la entrega en inspecciones de cauce.

- Impermeabilización de red secundaria comprende la reducción de pérdidas en canales que transportan menos de 1,5 m³/s, canales de 1,5 m³/s a 3 m³/s y de 3 m³/s a 5 m³/s.
- **Obras de distribución:** obras que permiten llevar agua desde canales principales hasta inspecciones de cauce. Incluyen la construcción de canales secundarios y tuberías.

Flexibilización de la red secundaria

Permite una distribución más dinámica del agua hacia las inspecciones, asegurando un suministro adecuado en diversos contextos operativos.

- **Mejora de la infraestructura existente:** Actualización y optimización de elementos físicos para mejorar eficiencia y capacidad de respuesta.
- Reservorios en red secundaria: Depósitos intermedios para garantizar suministro continuo de agua.
- Refuerzo de dotación superficial mediante el uso de agua subterránea: Integración de aguas subterráneas para complementar el suministro superficial en momentos de baja oferta, alta demanda o de corta.
- **Sistemas de gestión en inspecciones:** sistemas de control y gestión para monitorear el consumo de agua. Cuenta de agua por usuario.
- Estructuras de medición y control en red secundaria: Dispositivos para medir y controlar el uso del agua.
- Medidas contra vandalismo en red secundaria: implementar medidas de seguridad para asegurar operación continua y confiable.

9.2.3. RED TERCIARIA

Se define red terciaria a la infraestructura que permite la conducción y distribución de agua desde los canales secundarios hasta la toma de las propiedades. Son administrados por las inspecciones de cauce y los usuarios del sistema.

Mejora red terciaria:

Busca eficiencia en la conducción del agua desde la toma en canales secundarios hasta los usuarios. Componentes:

- Impermeabilización red terciaria: canales de menos de 0,050 m³/s, de 0,050 m³/s a 0,150 m³/s, de 0,15 m³/s a 0,50 m³/s.
- Obras de toma de usuarios: Mejorar instalaciones de captación de agua de los regantes, incluyendo compuertas y dispositivos de control.

Integración de los sistemas de gestión

Entendiendo que en la provincia existen múltiples sistemas de gestión diferentes para la distribución del agua, es necesario un proceso de integración y unificación de criterios con el

objetivo de mejorar los procesos de asignación del recurso como la comunicación entre los diferentes actores y la toma de decisiones.

- Extensión y capacitación a usuarios y operadores: Involucrar y capacitar a usuarios y operadores en el proceso de gestión del agua mediante la capacitación y la educación. Esto incluye información instruir sobre prácticas de uso eficiente del agua, normativas y regulaciones, así como entrenamiento en el manejo de sistemas de riego.
- Infraestructura tecnológica: Implementación de sistemas de comunicación eficientes que permitan la interacción fluida entre los diferentes actores involucrados. Requiere la adquisición de servidores y sistemas de almacenamiento de datos. El mantenimiento regular, la actualización y la seguridad de esta infraestructura son aspectos necesarios para asegurar su funcionamiento a largo plazo.
- Personal capacitado en todas las instancias: Formación continua para personal en todos los niveles. Garantizando así las mejores prácticas y tecnologías disponibles para mejorar la calidad de gestión del agua.

Uso del agua subterránea

La integración de agua subterránea con agua superficial permite dotar de una flexibilidad adicional a los sistemas de distribución de agua logrando una gestión integrada del recurso.

Mejoras intra parcelarias

Aumento de la eficiencia de aplicación en el regante.

- Riego por goteo: Tecnología para una aplicación más eficiente del agua.
- Reservorios intra parcelarios: Depósitos para almacenamiento dentro de las fincas de los usuarios. Permite disponer el recurso según el usuario disponga en los tiempos que desee.
- **Presurización de la red:** Asegura un flujo constante y controlado del agua. Facilita la implementación de riego por goteo y le da libertad al usuario de disponer del recurso cuando sea requerido.

9.3. OBJETIVO

La capacidad de definir costos específicos para cada componente de manera independiente permite una mayor precisión en la evaluación de los costos asociados al aumento de la eficiencia de uso del agua.

Al establecer costos por cada unidad de medida, como ser: \$/m para la construcción y operación de tuberías, \$/m³ para construcción de reservorios o \$/ha para el sistema en su conjunto, podremos presentar de manera clara y transparente el costo asociado a la disminución de cada metro cúbico de agua en el informe número 5.

Este enfoque no solo mejorará la precisión del análisis, sino que también facilitará la comunicación de nuestros resultados a todas las partes interesadas involucradas en el plan hídrico.

10. CONCLUSIONES

En este informe analizamos la gestión de los recursos hídricos de la provincia de Mendoza. Se compara la demanda real con la oferta sustentable calculada, por ejemplo, en la cuenca del río Mendoza el déficit en la situación actual alcanza unos 320 hm³ (asumiendo un nivel de confiabilidad del 80%). Un déficit que sin tomar medidas para mejorar la situación crecerá hasta casi los 800 hm³ en 2050.

En las demás cuencas también hay déficits, pero más moderados en comparación con la cuenca del río Mendoza.

En este informe también se estima el agua recirculada, refiriéndose al agua que se utiliza más de una vez, por ejemplo, el agua superficial que se utiliza para riego y parte de ella drena y se vuelve a utilizar para regar otras zonas.

Se calcula el volumen de agua recirculada utilizando el modelo WEAP, este fenómeno está afectando fuertemente a las Cuencas de Tunuyán (Superior e Inferior) donde el volumen de agua recirculada alcanza los 820 Hm³, equivalente a la mitad de la oferta sustentable del río Tunuyán.

La conclusión general de este informe es que la única manera de alcanzar una gestión hídrica sostenible es estimando los déficits hídricos y emprendiendo medidas que busquen reducir la demanda hídrica para alcanzar una gestión hídrica sostenible de los recursos hídricos es reduciendo la demanda de agua.

El Reporte N°5 ofrecerá alternativas para la reducción de la demanda de agua mediante mejoras en la eficiencia de uso y el Reporte N°6 analizará económicamente la alternativa elegida de las propuestas en el Reporte N°5.